+0  
 
0
42
1
avatar+175 

The number of diagonals in a certain regular polygon is equal to five times the number of sides. How many sides does this polygon have?

Maplesnowy  Jun 19, 2018
 #1
avatar
0

Solve for n:
5 n = 1/2 n (n - 3)
 Write the quadratic polynomial on the right-hand side in standard form.
Expand out terms of the right-hand side:
5 n = n^2/2 - (3 n)/2

Move everything to the left-hand side.
Subtract n^2/2 - (3 n)/2 from both sides:
(13 n)/2 - n^2/2 = 0

Factor the left-hand side.
Factor n and constant terms from the left-hand side:
-1/2 n (n - 13) = 0

Multiply both sides by a constant to simplify the equation.
Multiply both sides by -2:
n (n - 13) = 0

Find the roots of each term in the product separately.
Split into two equations:
n - 13 = 0 or n = 0

Look at the first equation: Solve for n.
Add 13 to both sides:
 n = 13     or      n = 0(Discard) . So this is a 13-gon polygon with 65 diagonals.

Guest Jun 19, 2018

22 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.