+0  
 
0
31
1
avatar

In triangle ABC, the angle bisector of angle BAC meets AC at D.  If angle BAC = 60, angle ABC = 60, and AD = 24, then find the area of triangle ABC.

 Feb 21, 2023
 #1
avatar+2602 
+1

Note that \(\triangle ABC \) is equilateral, so angle bisector \(AD\) is also an altitude of a 30-60-90 triangle. 

 

This means that the hypotenuse is \(24 \times {2 \sqrt3 \over 3} = 16 \sqrt 3\)

 

So the area of the triangle is \((16 \sqrt 3)^2 \times {\sqrt3 \over 4} = \color{brown}\boxed{192 \sqrt 3}\)

 Feb 21, 2023

1 Online Users