+0  
 
0
92
1
avatar+74 

In a circle with center $O$, $AD$ is a diameter, $ABC$ is a chord, $BO = 5$, and angle ABO = arc CD = 60 degrees. Find the length of $BC$.

 

 

 

codehtml127  Jun 29, 2018
 #1
avatar+88898 
+2

If arc CD   = 60°, the angle CAD is  1/2 of this  since it  intercepts this arc

So CAD  = 30°  = BAO

And since BAO  and ABO  =  30  + 60  = 90°

Then,in triangle BAO,  angle BAO  must =  90°  = angle  BOD

 

So....triangle  BAO  is a 30-60-90 right triangle

 

Now....draw  OC....and it will be  equal  to   OD  since both are radii

 

And if arc CD  = 60°....then angle central angle COD  = 60°

 

And since angle BOD   = 90 °

Then angle BOC  =  angle BOD  - angle COD  = 90 - 60  = 30°  

And angle ABO  = 60  so angle CBO  is supplemental  = 120°

So  angle   BCO  =  180  - angle BOC - angle CBO  =  180 - 30 - 120 = 30°

 

Thus triangle BOC  is isosceles with  angle BOC  = angle BCO

But BO  =  5....so.....BC  has the same measure  = 5

 

 

 

cool cool cool

CPhill  Jun 29, 2018
edited by CPhill  Jun 29, 2018

37 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.