As shown in the diagram, \(BD/DC=2\), \(CE/EA=3, \) and \(AF/FB=4\). Find \([DEF]/[ABC].\)
Another one...
The two diagonals of quadrilateral \(ABCD\) intersect at \(E\). We know \(DC=12, CA=21, AB=18, BD=19,\) and \(\angle ABD=\angle ACD.\) Find \([BEC]/[AED]\).
Thank you very much!
:P
Geometry
As shown in the diagram, \(\dfrac{BD}{DC}=2\) , \(\dfrac{CE}{EA}=3\), and \(\dfrac{AF}{FB}=4\). Find \(\dfrac{[DEF]}{[ABC]}\).
\(\begin{array}{|rcll|} \hline [ABC] &=& \dfrac{4EA\cdot3DC}{2}\sin(C) \\ \mathbf{[ABC]} &\mathbf{=}& \mathbf{6 EA\cdot DC \sin(C)} \\ \hline \end{array} \)
\(\begin{array}{|rcll|} \hline [AFE] &=& \dfrac{1EA\cdot4FB}{2}\sin(A) \quad | \quad \sin(A)=\dfrac{3DC}{5FB}\sin(C) \\ [AFE] &=& \dfrac{1EA\cdot4FB}{2}\cdot \dfrac{3DC}{5FB}\sin(C) \\ \mathbf{[AFE]} &\mathbf{=}& \mathbf{ \dfrac{6}{5} EA\cdot DC \sin(C)} \\ \hline \end{array} \)
\(\begin{array}{|rcll|} \hline [FBD] &=& \dfrac{2DC\cdot 1FB}{2}\sin(B) \quad | \quad \sin(B)=\dfrac{4EA}{5FB}\sin(C) \\ [FBD] &=& \dfrac{2DC\cdot 1FB}{2}\cdot \dfrac{4EA}{5FB}\sin(C) \\ \mathbf{[FBD]} &\mathbf{=}& \mathbf{ \dfrac{4}{5} EA\cdot DC \sin(C)} \\ \hline \end{array} \)
\(\begin{array}{|rcll|} \hline [EDC] &=& \dfrac{1DC\cdot 3EA}{2}\sin(C) \\ \mathbf{[EDC]} &\mathbf{=}& \mathbf{ \dfrac{3}{2} EA\cdot DC \sin(C)} \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline [AFE]+[FBD]+[EDC]+[DEF] &=& [ABC] \\ [DEF] &=& [ABC] -([AFE]+[FBD]+[EDC]) \quad | \quad : [ABC] \\\\ \dfrac{[DEF]}{[ABC]} &=& \dfrac{[ABC] -([AFE]+[FBD]+[EDC])} {[ABC]} \\\\ \dfrac{[DEF]}{[ABC]} &=&1 -\dfrac{[AFE]+[FBD]+[EDC]} {[ABC]} \\\\ \dfrac{[DEF]}{[ABC]} &=&\small{1 -\dfrac{\dfrac{6}{5} EA\cdot DC \sin(C)+\dfrac{4}{5} EA\cdot DC \sin(C)+\dfrac{3}{2} EA\cdot DC \sin(C)} {6 EA\cdot DC \sin(C)} }\\\\ \dfrac{[DEF]}{[ABC]} &=&1 -\dfrac{\dfrac{35}{10}} {6 } \\\\ \dfrac{[DEF]}{[ABC]} &=&1 - \dfrac{7}{12} \\\\ \mathbf{\dfrac{[DEF]}{[ABC]}} &\mathbf{=}& \mathbf{\dfrac{5}{12}} \\ \hline \end{array}\)
Coolstuff, could you put only one of these questions per post.
It makes it more confusing to hve 2 or more plus there should only be one question per post anyway. :)
Here's the second one
Angle AEB= Angle DEC
Angle ABE = Angle DCE
So.....triangle AEB is similar to Triangle DEC
So
DC / AB = 12/18 = 2/3
So
DE / AE = 2 / 3 ⇒ AE = (3/2)DE
Which implies that
DE / AE = EC / EB
2 / 3 = EC / EB
EC = (2/3)EB
EB + DE = 19
EC + AE = 21
EB + DE = 19
(2/3)EB + (3/2)DE = 21
EB + DE = 19
-EB - (9/4)DE = -63/2
-(5/4)DE = -25/2
DE = (25/2) (4/5) = 10
So
AE = (3/2)DE = 15
And
EB + DE = 19
EB + 10 = 19
EB = 9
So
EC = (2/3)EB
EC = (2/3)(9) = 6
And
[ BEC] = (1/2)(EB) (EC) sin BEC = (1/2) (9)(6) sin BEC
[ AED ] = (1/2)(DE) (AE) sinAED = (1/2) (10)( 15) sin AED
And sin BEC = sin AED
So
[BEC ] / [ AED] = (9)(6) / [ 10 * 15] = 54 / 150 = 9 / 25