We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
276
6
avatar+782 

As shown in the diagram, \(BD/DC=2\)\(CE/EA=3, \) and \(AF/FB=4\). Find \([DEF]/[ABC].\)

 

Another one...

 

The two diagonals of quadrilateral \(ABCD\) intersect at \(E\). We know \(DC=12, CA=21, AB=18, BD=19,\) and \(\angle ABD=\angle ACD.\) Find \([BEC]/[AED]\).

 

 

Thank you very much!

:P 
 

 Feb 14, 2019
 #1
avatar+23041 
+6

Geometry

As shown in the diagram, \(\dfrac{BD}{DC}=2\) , \(\dfrac{CE}{EA}=3\), and \(\dfrac{AF}{FB}=4\). Find \(\dfrac{[DEF]}{[ABC]}\).

 

\(\begin{array}{|rcll|} \hline [ABC] &=& \dfrac{4EA\cdot3DC}{2}\sin(C) \\ \mathbf{[ABC]} &\mathbf{=}& \mathbf{6 EA\cdot DC \sin(C)} \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline [AFE] &=& \dfrac{1EA\cdot4FB}{2}\sin(A) \quad | \quad \sin(A)=\dfrac{3DC}{5FB}\sin(C) \\ [AFE] &=& \dfrac{1EA\cdot4FB}{2}\cdot \dfrac{3DC}{5FB}\sin(C) \\ \mathbf{[AFE]} &\mathbf{=}& \mathbf{ \dfrac{6}{5} EA\cdot DC \sin(C)} \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline [FBD] &=& \dfrac{2DC\cdot 1FB}{2}\sin(B) \quad | \quad \sin(B)=\dfrac{4EA}{5FB}\sin(C) \\ [FBD] &=& \dfrac{2DC\cdot 1FB}{2}\cdot \dfrac{4EA}{5FB}\sin(C) \\ \mathbf{[FBD]} &\mathbf{=}& \mathbf{ \dfrac{4}{5} EA\cdot DC \sin(C)} \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline [EDC] &=& \dfrac{1DC\cdot 3EA}{2}\sin(C) \\ \mathbf{[EDC]} &\mathbf{=}& \mathbf{ \dfrac{3}{2} EA\cdot DC \sin(C)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline [AFE]+[FBD]+[EDC]+[DEF] &=& [ABC] \\ [DEF] &=& [ABC] -([AFE]+[FBD]+[EDC]) \quad | \quad : [ABC] \\\\ \dfrac{[DEF]}{[ABC]} &=& \dfrac{[ABC] -([AFE]+[FBD]+[EDC])} {[ABC]} \\\\ \dfrac{[DEF]}{[ABC]} &=&1 -\dfrac{[AFE]+[FBD]+[EDC]} {[ABC]} \\\\ \dfrac{[DEF]}{[ABC]} &=&\small{1 -\dfrac{\dfrac{6}{5} EA\cdot DC \sin(C)+\dfrac{4}{5} EA\cdot DC \sin(C)+\dfrac{3}{2} EA\cdot DC \sin(C)} {6 EA\cdot DC \sin(C)} }\\\\ \dfrac{[DEF]}{[ABC]} &=&1 -\dfrac{\dfrac{35}{10}} {6 } \\\\ \dfrac{[DEF]}{[ABC]} &=&1 - \dfrac{7}{12} \\\\ \mathbf{\dfrac{[DEF]}{[ABC]}} &\mathbf{=}& \mathbf{\dfrac{5}{12}} \\ \hline \end{array}\)

 

laugh

 Feb 15, 2019
 #2
avatar+782 
0

Is there another way to do it without trig? Either way, thanks :D

CoolStuffYT  Feb 15, 2019
 #3
avatar+103674 
0

Coolstuff, could you put only one of these questions per post.

It makes it more confusing to hve 2 or more  plus there should only be one question per post anyway. :)

 Feb 15, 2019
 #5
avatar+782 
0

Oh, sorry. I'll do it next time.

CoolStuffYT  Feb 16, 2019
 #4
avatar+102947 
+1

Here's the second one

 

Angle AEB= Angle DEC

Angle ABE = Angle DCE 

 

So.....triangle AEB is similar to Triangle DEC

 

So 

DC / AB = 12/18 = 2/3

So

DE /  AE =  2 / 3   ⇒    AE = (3/2)DE

Which implies that

DE / AE  =  EC / EB

2 / 3  =   EC / EB

EC = (2/3)EB

 

EB + DE = 19

EC + AE = 21

 

EB + DE =  19

(2/3)EB  + (3/2)DE = 21

 

EB + DE  = 19

-EB - (9/4)DE = -63/2

 

-(5/4)DE = -25/2

DE = (25/2) (4/5) = 10

So

AE = (3/2)DE =  15

 

And

EB + DE = 19

EB + 10 = 19

EB = 9

So

EC = (2/3)EB

EC = (2/3)(9) = 6

 

And

 

[ BEC] = (1/2)(EB) (EC) sin BEC  =  (1/2) (9)(6) sin BEC

[ AED ] = (1/2)(DE) (AE) sinAED = (1/2) (10)( 15) sin AED

And sin BEC = sin AED

 

So

[BEC ] / [ AED] =   (9)(6) / [ 10 * 15]  =   54 / 150  =   9 /  25

 

 

cool cool cool

 Feb 15, 2019
edited by CPhill  Feb 16, 2019
 #6
avatar+782 
0

Thank you! It was a little long, but sometimes problems have to be :D

CoolStuffYT  Feb 16, 2019

25 Online Users

avatar
avatar