Processing math: 100%
 
+0  
 
0
1028
6
avatar+1253 

As shown in the diagram, BD/DC=2CE/EA=3, and AF/FB=4. Find [DEF]/[ABC].

 

Another one...

 

The two diagonals of quadrilateral ABCD intersect at E. We know DC=12,CA=21,AB=18,BD=19, and ABD=ACD. Find [BEC]/[AED].

 

 

Thank you very much!

:P 
 

 Feb 14, 2019
 #1
avatar+26396 
+6

Geometry

As shown in the diagram, BDDC=2 , CEEA=3, and AFFB=4. Find [DEF][ABC].

 

[ABC]=4EA3DC2sin(C)[ABC]=6EADCsin(C)

[AFE]=1EA4FB2sin(A)|sin(A)=3DC5FBsin(C)[AFE]=1EA4FB23DC5FBsin(C)[AFE]=65EADCsin(C)

[FBD]=2DC1FB2sin(B)|sin(B)=4EA5FBsin(C)[FBD]=2DC1FB24EA5FBsin(C)[FBD]=45EADCsin(C)

[EDC]=1DC3EA2sin(C)[EDC]=32EADCsin(C)

 

[AFE]+[FBD]+[EDC]+[DEF]=[ABC][DEF]=[ABC]([AFE]+[FBD]+[EDC])|:[ABC][DEF][ABC]=[ABC]([AFE]+[FBD]+[EDC])[ABC][DEF][ABC]=1[AFE]+[FBD]+[EDC][ABC][DEF][ABC]=165EADCsin(C)+45EADCsin(C)+32EADCsin(C)6EADCsin(C)[DEF][ABC]=135106[DEF][ABC]=1712[DEF][ABC]=512

 

laugh

 Feb 15, 2019
 #2
avatar+1253 
0

Is there another way to do it without trig? Either way, thanks :D

CoolStuffYT  Feb 15, 2019
 #3
avatar+118702 
0

Coolstuff, could you put only one of these questions per post.

It makes it more confusing to hve 2 or more  plus there should only be one question per post anyway. :)

 Feb 15, 2019
 #5
avatar+1253 
0

Oh, sorry. I'll do it next time.

CoolStuffYT  Feb 16, 2019
 #4
avatar+130477 
+2

Here's the second one

 

Angle AEB= Angle DEC

Angle ABE = Angle DCE 

 

So.....triangle AEB is similar to Triangle DEC

 

So 

DC / AB = 12/18 = 2/3

So

DE /  AE =  2 / 3   ⇒    AE = (3/2)DE

Which implies that

DE / AE  =  EC / EB

2 / 3  =   EC / EB

EC = (2/3)EB

 

EB + DE = 19

EC + AE = 21

 

EB + DE =  19

(2/3)EB  + (3/2)DE = 21

 

EB + DE  = 19

-EB - (9/4)DE = -63/2

 

-(5/4)DE = -25/2

DE = (25/2) (4/5) = 10

So

AE = (3/2)DE =  15

 

And

EB + DE = 19

EB + 10 = 19

EB = 9

So

EC = (2/3)EB

EC = (2/3)(9) = 6

 

And

 

[ BEC] = (1/2)(EB) (EC) sin BEC  =  (1/2) (9)(6) sin BEC

[ AED ] = (1/2)(DE) (AE) sinAED = (1/2) (10)( 15) sin AED

And sin BEC = sin AED

 

So

[BEC ] / [ AED] =   (9)(6) / [ 10 * 15]  =   54 / 150  =   9 /  25

 

 

cool cool cool

 Feb 15, 2019
edited by CPhill  Feb 16, 2019
 #6
avatar+1253 
0

Thank you! It was a little long, but sometimes problems have to be :D

CoolStuffYT  Feb 16, 2019

4 Online Users

avatar
avatar
avatar