In triangle $ABC,$ $AB = 15,$ $BC = 9,$ and $AC = 10.$ Find the length of the shortest altitude in this triangle.
Using Herons Formula,
sqrt(s(s-AB)(s-BC)(s-CA)) = sqrt(17(17-15)(17-9)(17-10)) = sqrt(17 * 2 * 8 * 7) = sqrt(1904) = 4√119
Then, you solve for the altitudes:
BC_a = (2 * A) / BC = (2 * 4√119) / 9 = (8√119) / 9
CA_a = (2 * A) / CA = (2 * 4√119) / 10 = (8√119) / 10 = (4√119) / 5
AB_a = (2 * A) / AB = (2 * 4√119) / 15 = (8√119) / 15
The shortest one is (8√119) / 15.
Using Herons Formula,
sqrt(s(s-AB)(s-BC)(s-CA)) = sqrt(17(17-15)(17-9)(17-10)) = sqrt(17 * 2 * 8 * 7) = sqrt(1904) = 4√119
Then, you solve for the altitudes:
BC_a = (2 * A) / BC = (2 * 4√119) / 9 = (8√119) / 9
CA_a = (2 * A) / CA = (2 * 4√119) / 10 = (8√119) / 10 = (4√119) / 5
AB_a = (2 * A) / AB = (2 * 4√119) / 15 = (8√119) / 15
The shortest one is (8√119) / 15.
Find the length of the shortest altitude in this triangle.
general circle equation
\((x – x_P)² + (y – y_P)² = r²\)
\(y^2=10^2-x^2\\ y^2=9^2-(15-x)^2\\ y^2=81-225+30x-x^2\\ 100-x^2=-144+30x-x^2\\30x=244\\ x_C=8.1\overline{33}\\ \color{blue}y_C=h_C=5.818\)
\(y^2=15^2-x^2\\ y^2=10^2-(9-x)^2\\ y^2=100-x^2+18x-81\\ 225-x^2=19+18x-x^2\\ 18x=206\\ x_A=11.\overline{44}\\ y_A=h_A=9.697\)
\(y^2=9^2-x^2\\ y^2=15^2-(10-x)^2\\ y^2=225-100+20x-x^2\\ 81-x^2=125+20x-x^2\\20x=-44\\ x_B=-2.2\\ y_B=h_B=8.726\)
\(\color{blue}The\ length\ of\ the\ shortest\ altitude\ in\ this\ triangle\ is\ h_C=5.818\)
!