We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1699
1
avatar

Points $P$, $Q$, and $R$ are on sides $\overline{AB}$, $\overline{CD}$, and $\overline{BC}$ of rectangle $ABCD$ as shown below such that $BP = 4$, $CQ = 18$, $\angle PRQ = 90^\circ$, and $CR = 2BR$. Find $PQ$. 

 Mar 28, 2018
 #1
avatar+22569 
+1

Points $P$, $Q$, and $R$ are on sides $\overline{AB}$, $\overline{CD}$, and $\overline{BC}$ of rectangle $ABCD$ as shown below such that $BP = 4$, $CQ = 18$, $\angle PRQ = 90^\circ$, and $CR = 2BR$.

Find $PQ$. 

 

 

 

 

\(\text{Let $x = \overline{PQ}$} \\ \text{Let $y = \overline{BC}=\overline{AD}$} \\ \text{Let $u = \overline{RQ}$} \\ \text{Let $v = \overline{RP}$} \)

 

\(\begin{array}{|lrcll|} \hline & x^2 &=& y^2+(18-4)^2 \\ & x^2 &=& y^2+(14)^2 \\ & x^2 &=& y^2+196\\ (1) & y^2 &=& x^2-196 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline v^2 &=& 4^2+ \left( \dfrac{1}{3}y \right)^2 \\ &=& 16+ \dfrac{1}{9}y^2 \\\\ u^2 &=& 18^2 + \left( \dfrac{2}{3}y \right)^2 \\ &=& 324 + \dfrac{4}{9}y^2 \\\\ x^2 &=& u^2+v^2 \\ &=& 324 + \dfrac{4}{9}y^2 + 16+ \dfrac{1}{9}y^2 \\ &=& 340 + \dfrac{5}{9}y^2 \\ x^2 &=& 340 + \dfrac{5}{9}y^2 \quad &| \quad y^2 = x^2-196 \\ x^2 &=& 340 + \dfrac{5}{9}(x^2-196) \\ x^2 &=& 340 + \dfrac{5}{9}x^2- \dfrac{5\cdot 196}{9} \\ x^2+ \dfrac{5}{9}x^2 &=& 340 - \dfrac{5\cdot 196}{9} \\ \dfrac{4}{9}x^2 &=& 340 - \dfrac{5\cdot 196}{9} \quad &| \quad \cdot \dfrac{9}{4} \\ x^2 &=& \dfrac{9\cdot 340}{4} - \dfrac{5\cdot 196}{4} \\ x^2 &=& \dfrac{9\cdot 340-5\cdot 196}{4} \\ x^2 &=& 520 \\ x^2 &=& 4\cdot 130 \\ x &=& 2\cdot\sqrt{ 130} \\ \mathbf{x} & \mathbf{\approx}& \mathbf{22.80} \\ \hline \end{array}\)

 

laugh

 Mar 28, 2018

12 Online Users

avatar
avatar