+0  
 
0
1
2
avatar+911 

Equilateral triangle ABC is inscribed in a circle.  Let P be a point on arc BC.  Given that $PB = 18$ and $PC = 18,$ find $PA.$

 
 Dec 31, 2024
 #1
avatar+518 
0

The distance PA is equal to 12 sqrt(3).

 Dec 31, 2024
 #2
avatar+130042 
+1

 

ABPC is a quadrilateral  inscribed in the circle

Angle BAC  = 60°

So angle BPC is supplemental to angle BAC  = 120°

 

Using the Law of Cosines

 

BC^2 = PB^2 + PC^2  - 2(PB *  PC) cos (120°)

BC^2 = 18^2 + 18^2 - 2(18*18( (-1/2)

BC^2 = 18^2 + 18^2 + 18^2

BC^2 = 3*18^2

BC = 18sqrt (3) = side of the equilateral triangle

 

Triangle AEC is a 30-60-90 right triangle

AC = 18sqrt (3) = the hypotenuse

AE is opposite the 60° angle =  18sqrt 3 * (sqrt 3 /2)  =  27

 

Triangle PEC is also a 30-60-90 right triangle

EC = 9sqrt 3  is opposite the 60° angle

PE is opposite the 30° angle  = 9sqrt 3/sqrt 3 = 9

 

PA = PE + AE =  9 + 27 =  36

 

cool cool cool

 Jan 1, 2025
edited by CPhill  Jan 1, 2025

3 Online Users

avatar
avatar