+0  
 
0
3
1
avatar+294 

Let P_1 P_2 P_3 \dotsb P_{10} be a regular polygon inscribed in a circle with radius $1.$ Compute
P_1 P_2 + P_2 P_3 + P_3 P_4 + \dots + P_9 P_{10} + P_{10} P_1

 Sep 14, 2024
 #1
avatar+1926 
+1

Let's note that \(P_1 P_2 + P_2 P_3 + P_3 P_4 + \dots + P_9 P_{10} + P_{10} P_1\) is simply the perimeter of the decagon

We also know that \(radius/2 ( -1 + \sqrt {5})\) is one of the sidelenghts. Thus, we can find the perimeter easily. 

 

The perimeter is just

\( 10 (1/2) ( -1 +\sqrt{ 5}) = 5 ( -1 + \sqrt{ 5}) ≈ 6.18\)

 

Thanks! :)

 Sep 17, 2024
edited by NotThatSmart  Sep 17, 2024

2 Online Users