We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
121
4
avatar

The rectangle is inscribed in a circle with Dia = 10 cm. The area of the segment that is formed by the shorter side of the rectangle and the circumference of a circle is 4 cm2.  Find the area of that rectangle.

Have fun.smiley

 Aug 30, 2019
edited by Guest  Aug 30, 2019
edited by Guest  Aug 30, 2019
edited by Guest  Aug 31, 2019
 #1
avatar
+1

The rectangle is inscribed in a circle with Dia = 10 cm. The area of the segment that is formed by the shorter side of the rectangle and the circumference of a circle is 4 cm2.  Find the area of that rectangle.

 

Hello Guest!

    \(\alpha\) = center angle
     r = radius
     s = chord

     b = long side of the rectangle
     A = segment area

    \(A_R\) = rectangle area

 

\(\color{blue}A=\frac{r^2}{2}(\alpha -sin \alpha )\\ \alpha -sin \alpha=\frac{2\cdot A}{r^2}=\frac{8cm^2}{(5cm)^2}\\ \alpha -sin\ \alpha=0.32\\ \alpha -sin\ \alpha -0.32=0 \)

 

http://www.arndt-bruenner.de/mathe/scripts/gleichungssysteme2.htm

Solution found in 1st run after 3 iterations

\(\alpha = 1,27721309204\)

 

\(s=2r\cdot sin(\frac{\alpha}{2})\\ s=2\cdot 5cm\cdot sin(\frac{1.27721309204}{2})\\ \color{blue}s=5.961cm\)

 

\(cos(\frac{\alpha}{2})=\frac{\frac{b}{2}}{r}\\ b=2r\cdot cos(\frac{\alpha}{2})=10cm\cdot cos(\frac{1,27721309204}{2})\)

\(b=8.029cm\)

 

\(A_R=s\cdot b=5.961cm\cdot 8.029cm\)

 \(A_R=47.862\ cm^2\)

laugh  !

asinus

 Aug 31, 2019
edited by asinus  Aug 31, 2019
edited by asinus  Sep 1, 2019
 #2
avatar
+1

My numbers are somewhat different>>

D = 10 cm

r  = 5 cm

(Central angle)  α = 73.168º

(Chord)   c = 5.96 cm

(Segment area)  A= 4 cm²

(Rec short side)   a = 5.960 cm

(Rec  long side)   b = 8.030 cm

(Rectangle area)  Ar = 47.859 cm²

smiley  

Guest Aug 31, 2019
 #3
avatar+104836 
+2

Let    θ  be the central angle   whose endpoints are on  the shorter side  of the rectangle

 

The area of the sector formed by this angle  = ( r^2/2 ) ( θ)

And the area of the isosceles triangle formed by the two radii  and the shorter side of the rectangle  = 

(r^2/2) sin ( θ)

 

So....the area between  the shorter side of the rectangle  and the circumference is given by

 

4  =  (r/2/2) (  θ - sin θ)

4  = (5^2/2) ( θ -sin θ)

4 = (25/2) (  θ - sin θ)

 θ - sin θ  =  8/25

Using a little technology to solve this for   θ  ≈  1.27721 rads ≈  73.18°

 

From the Law of Cosines we can find the shorter side of the rectangle as

 

√ [ 5^2 + 5^2 - 2(5)(5)cos(73.18°) ]   =  √[50 -50cos(73.18°)]  ≈ 5.96 cm

 

And using the Pythagorean Theorem, we can find the longer side of the rectangle  as

 

√[10^2  - 5.96^2 ]  ≈ 8.03 cm

 

So.....the area of the rectangle  will be the product of these two sides ≈  5.96 * 8.03 ≈ 47.86 cm^2

 

Here's a pic :

 

 

cool cool cool

 Aug 31, 2019
 #4
avatar
+1

Hi, Phill!  You did an exellent job again.

I created and posted this math problem on this forum, I couldn't solve it using formulas because I got stuck at this:   A = r2 / 2 ( θ - sin θ )

So, I've decided to use the old fashioned method - guesstimation. smiley

Guest Aug 31, 2019

7 Online Users

avatar