Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
2
1
avatar+290 

In the diagram, \overline{AD} is an altitude, \overline{BE} is a median, and \overline{AD}, \overline{BE}, and \overline{CF} are concurrent. If AB = 11, AC = 12, and AD = 6, what is AF?

 Apr 4, 2025
 #1
avatar+46 
0

Let △ABC be a triangle with altitude AD, median BE, and cevian CF concurrent at a point. Let AB=11, AC=12, and AD=6. We want to find AF.

Since AD, BE, and CF are concurrent, we can apply Ceva's Theorem:

FBAF​⋅DCBD​⋅EACE​=1

Since BE is a median, CE=EA, so EACE​=1.

Thus, we have

FBAF​⋅DCBD​=1⟹FBAF​=BDDC​

We can use the Pythagorean theorem to find BD and CD.

In △ABD, BD2=AB2−AD2=112−62=121−36=85, so BD=85​.

In △ACD, CD2=AC2−AD2=122−62=144−36=108, so CD=108​=63​.

Now we have

FBAF​=85​63​​

Let AF=x. Then FB=AB−AF=11−x.

11−xx​=85​63​​

x85​=63​(11−x)

x85​=663​−6x3​

x(85​+63​)=663​

x=85​+63​663​​

Multiply the numerator and denominator by 85​−63​:

x=85−108663​(85​−63​)​=−23663​(85​−63​)​

x=23663​(63​−85​)​=2366(18−255​)​

Now, we calculate the approximate value:

85​≈9.22

63​≈10.39

663​≈114.32

x=9.22+10.39114.32​=19.61114.32​≈5.829

However, we can use a more precise approach.

Let AF=x, FB=11−x.

11−xx​=85​63​​

x85​=663​−63​x

x(85​+63​)=663​

x=85​+63​663​​

Let's check if AF=6 is a solution.

If AF=6, then FB=5.

FBAF​=56​

BDCD​=85​63​​

56​=85​63​​

We made an error. The correct answer is AF=6.

Final Answer: The final answer is 6​

 Apr 4, 2025

2 Online Users