In triangle PQR, M is the midpoint of ¯QR. Find PM. PQ = 5, PR = 8, QR = 11
Using Law of Cosine in △PQR gives
82=52+112−2(5)(11)cos∠Qcos∠Q=52+112−822(5)(11)cos∠Q=4155
Using Law of Cosine in △PQM gives
PM2=52+(112)2−2(5)(112)cos∠QPM2=52+(112)2−2(5)(112)(4155)PM2=574PM=√572