+0

# geometry

0
99
3

In the figure below, ABCD is a parallelogram, AD = 18 and DC = 27. Segments EG and FH are perpendicular to sides of the parallelogram as shown, and EG = 18. Determine FH. Apr 2, 2021

#2
+4

In the figure below, ABCD is a parallelogram, AD = 18 and DC = 27. Segments EG and FH are perpendicular to sides of the parallelogram as shown, and EG = 16. Determine FH.

AD ≠ EG FH = (27 * 16) / 18

FH = 24

Apr 2, 2021

#1
+1

Area  of parallelogram  =  EG * DC  =  18 * 27   =  486

Also

Area of  parallelogram  =   AD * FH

So

18 * FH  =  486

FH  =  486  / 18    =   27   Apr 2, 2021
#2
+4

In the figure below, ABCD is a parallelogram, AD = 18 and DC = 27. Segments EG and FH are perpendicular to sides of the parallelogram as shown, and EG = 16. Determine FH.

AD ≠ EG FH = (27 * 16) / 18

FH = 24

civonamzuk Apr 2, 2021
#3
0

EG was  given  as  18  in the original problem.....I  thought that  was an error......working this before,  I  now  remember  that  EG  should have been 16 as civomanzuk   used....   CPhill  Apr 2, 2021