+0  
 
-1
3
1
avatar+284 

In triangle $ABC$, point $D$ is on side $\overline{AC}$ such that line segment $\overline{BD}$ bisects $\angle ABC$. If $\angle A = 45^\circ$, $\angle C = 45^\circ$, and $AC = 12$, then find the area of triangle $ABD$.

 Aug 2, 2024
 #1
avatar+1790 
+1

Let's make some observations of the problem. 

 

First, note that triangle ABC is a 45-45-90 right triangleThis means that\( AB = BC  =   12/\sqrt 2 =  6\sqrt 2 \)

Also, we have that

 

\(AD = AD\\ BD = BD \\ AB = BC \)

 

This means that triangles  ABD  and CBD  are congruent

 

Thus, we have \([ ABD ]   =  (1/2) [ABC]   =  (1/2) ( 1/2) ( 6\sqrt 2)^2  =  (1/4) (72)   = 18\)

 

So our aswer is 18. 

 

Thanks! :)

 Aug 2, 2024
edited by NotThatSmart  Aug 2, 2024

5 Online Users

avatar
avatar
avatar