Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB. Let P be a point on OA, and let line CP intersect the circle again at Q. If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.
thanks to anyone who answers!
~ iamhappy :)
Let r be the radius.
Then OA = OB = OC = r.
By Pythagorean theorem,
\(CP^2 = OP^2 + OC^2\\ CP^2 = 20^2 + r^2\\ CP = \sqrt{r^2 + 400}\)
Then,
\(AP = AO - OP = r - 20\\ BP = BO + OP = r + 20\)
Consider the power of point P.
\(CP \cdot PQ = AP \cdot PB\\ 7\sqrt{r^2 + 400} = (r - 20)(r + 20)\\ 49(r^2 + 400) = (r^2 - 400)^2\\ (r^2)^2 - 800r^2 + 160000 - 49r^2 - 19600 = 0\\ (r^2)^2 - 849r^2 + 140400 = 0\)
Using quadratic formula,
\(r^2 = \dfrac{849 \pm \sqrt{849^2 - 4(140400)}}{2} \\ r^2 = 225\text{(rejected) or }\boxed{r^2 = 624}\)
Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB. Let P be a point on OA, and let line CP intersect the circle again at Q. If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OP = 20 PQ = 7 CP = sqrt(r2 + 202) AP = r - 20 PB = r + 20
PQ * CP = AP * PB
7 * sqrt(r2 + 202) = (r - 20)(r + 20)
r = 4√39 r2 = 624