In triangle ABC, AP=PQ2=BQ and CRRA=32. Find [QBC][CRQ].
[QBC]/[CRQ] = 4/7.
Let AR = 2k, RC = 3k, AP = p, PQ = 2p, QB = p.
Then
[QBC]=[ABC]−[ACQ]=12(5k)(4p)sin∠A−12(5k)(3p)sin∠A=5kp2sin∠A[CRQ]=[ACQ]−[AQR]=12(5k)(3p)sin∠A−12(2k)(3p)sin∠A=9kp2sin∠A
Therefore,
[QBC][CRQ]=5kp2sin∠A9kp2sin∠A=59