Processing math: 100%
 
+0  
 
0
359
2
avatar+273 

In triangle ABC, AP=PQ2=BQ and CRRA=32. Find [QBC][CRQ].

 

 

 May 15, 2022
 #1
avatar
-2

[QBC]/[CRQ] = 4/7.

 May 15, 2022
 #2
avatar+9675 
+2

Let AR = 2k, RC = 3k, AP = p, PQ = 2p, QB = p.

 

Then 

[QBC]=[ABC][ACQ]=12(5k)(4p)sinA12(5k)(3p)sinA=5kp2sinA[CRQ]=[ACQ][AQR]=12(5k)(3p)sinA12(2k)(3p)sinA=9kp2sinA

 

Therefore, 

[QBC][CRQ]=5kp2sinA9kp2sinA=59

 May 16, 2022

1 Online Users