+0  
 
0
2016
1
avatar+1836 

George has an unfair six-sided die. The probability that it rolls a 6 is $\frac{1}{2}$, and the probability that it rolls any other number is $\frac{1}{10}$. What is the expected value of the number shown when this die is rolled? Express your answer as a decimal.

 Apr 27, 2015

Best Answer 

 #1
avatar+23252 
+10

(1/2) the time he rolls a 6:  (1/2) x 6  =  3.

(1/10) the time he rolls a 1:  (1/10) x 1  =  1/10

(1/10) the time he rolls a 2:  (1/10) x 2  =  2/10

(1/10) the time he rolls a 3:  (1/10) x 3  =  3/10

(1/10) the time he rolls a 4:  (1/10) x 4  =  4/10

(1/10) the time he rolls a 5:  (1/10) x 5  =  5/10

Sum those values:  3 + 1/10 + 2/10 + 3/10 + 4/10 + 5/10  =  4.5

Expected value is 4.5

 Apr 27, 2015
 #1
avatar+23252 
+10
Best Answer

(1/2) the time he rolls a 6:  (1/2) x 6  =  3.

(1/10) the time he rolls a 1:  (1/10) x 1  =  1/10

(1/10) the time he rolls a 2:  (1/10) x 2  =  2/10

(1/10) the time he rolls a 3:  (1/10) x 3  =  3/10

(1/10) the time he rolls a 4:  (1/10) x 4  =  4/10

(1/10) the time he rolls a 5:  (1/10) x 5  =  5/10

Sum those values:  3 + 1/10 + 2/10 + 3/10 + 4/10 + 5/10  =  4.5

Expected value is 4.5

geno3141 Apr 27, 2015

3 Online Users

avatar