+0  
 
0
128
1
avatar

Given an obtuse triangle \(ABC\)  with \(\angle ABC\) obtuse, extend \(\overline{AB}\) past \(B\) to a point \(D\) such that \(\overline{CD}\) is perpendicular to \(\overline{AB}\). Let \(F\) be the point on line segment \(\overline{AC}\) such that \(\overline{BF}\) is perpendicular to \(\overline{AB}\), and extend \(\overline{BF}\) past \(F\) to a point \(E\) such that \(\overline{BE}\) is perpendicular to \(\overline{CE}\). Given that \(\angle ECF = \angle BCD\), show that \(\triangle ABC \sim \triangle BFC\).

 

(There were no images for this problem.)
 

 Jan 16, 2020
 #1
avatar+11729 
+2

Here are the images for the problem.

laugh

 Jan 16, 2020
edited by Omi67  Jan 16, 2020
edited by Omi67  Jan 16, 2020
edited by Omi67  Jan 16, 2020

20 Online Users

avatar
avatar