+0  
 
0
754
1
avatar

Given an obtuse triangle \(ABC\)  with \(\angle ABC\) obtuse, extend \(\overline{AB}\) past \(B\) to a point \(D\) such that \(\overline{CD}\) is perpendicular to \(\overline{AB}\). Let \(F\) be the point on line segment \(\overline{AC}\) such that \(\overline{BF}\) is perpendicular to \(\overline{AB}\), and extend \(\overline{BF}\) past \(F\) to a point \(E\) such that \(\overline{BE}\) is perpendicular to \(\overline{CE}\). Given that \(\angle ECF = \angle BCD\), show that \(\triangle ABC \sim \triangle BFC\).

 

(There were no images for this problem.)
 

 Jan 16, 2020
 #1
avatar+12530 
+2

Here are the images for the problem.

laugh

 Jan 16, 2020
edited by Omi67  Jan 16, 2020
edited by Omi67  Jan 16, 2020
edited by Omi67  Jan 16, 2020

1 Online Users