We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
163
9
avatar+159 

given cos(π/4 + x) = m

what's the value of sin2x, in terms of m?

 Mar 14, 2019
 #1
avatar
+2

By the double-angle formula for sine:

 

\(\sin(2x)=2\sin(x)\cos(x)\\~\\ \sin(2x)=2\sin(x+\frac{\pi}{4}-\frac{\pi}{4})\cos(x+\frac{\pi}{4}-\frac{\pi}{4})\\~\\ \sin(2x)=2 \Big[\sin\Big((x+\frac{\pi}{4})-\frac{\pi}{4}\Big)\Big]\Big[\cos\Big((x+\frac{\pi}{4})-\frac{\pi}{4}\Big)\Big] \)

 

By the difference formulas for sine and cosine:

 

\( \sin(2x)=2 \Big[\sin( x+\frac{\pi}{4} )\cos(\frac{\pi}{4})-\cos(x+\frac{\pi}{4})\sin(\frac{\pi}{4})\Big]\Big[\cos(x+\frac{\pi}{4})\cos(\frac{\pi}{4})+\sin(x+\frac{\pi}{4})\sin(\frac{\pi}{4})\Big] \\~\\ \sin(2x)=2 \Big[\sin( x+\frac{\pi}{4} )(\frac{\sqrt2}{2})-\cos(x+\frac{\pi}{4})(\frac{\sqrt2}{2})\Big]\Big[\cos(x+\frac{\pi}{4})(\frac{\sqrt2}{2})+\sin(x+\frac{\pi}{4})(\frac{\sqrt2}{2})\Big] \\~\\ \sin(2x)=2 (\frac{\sqrt2}{2})\Big[\sin( x+\frac{\pi}{4} )-\cos(x+\frac{\pi}{4})\Big](\frac{\sqrt2}{2})\Big[\cos(x+\frac{\pi}{4})+\sin(x+\frac{\pi}{4})\Big] \\~\\ \sin(2x)=2 (\frac{\sqrt2}{2}) (\frac{\sqrt2}{2})\Big[\sin( x+\frac{\pi}{4} )-\cos(x+\frac{\pi}{4})\Big]\Big[\sin(x+\frac{\pi}{4})+\cos(x+\frac{\pi}{4})\Big] \\~\\ \sin(2x)=\Big[\sin( x+\frac{\pi}{4} )-\cos(x+\frac{\pi}{4})\Big]\Big[\sin(x+\frac{\pi}{4})+\cos(x+\frac{\pi}{4})\Big] \\~\\ \sin(2x)=\sin^2( x+\frac{\pi}{4} )-\cos^2(x+\frac{\pi}{4}) \)

 

By the Pythagorean identity:

 

\(\sin(2x)=(\,1-\cos^2(x+\frac{\pi}{4})\,)-\cos^2(x+\frac{\pi}{4})\\~\\ \sin(2x)=(\,1-m^2\,)-m^2\\~\\ \sin(2x)=1-2m^2\)

.
 Mar 14, 2019
 #2
avatar+102763 
+1

Very impressive!  That looks really hard !

Melody  Mar 15, 2019
 #3
avatar+102763 
+3

given cos(π/4 + x) = m

what's the value of sin2x, in terms of m?

 

How about:

 

 

\(cos(π/4 + x) = m\\ cos(\pi/4)cosx - sin(\pi/4)sinx=m\\ \frac{cosx}{\sqrt2}-\frac{sinx}{\sqrt2}=m\\ cosx-sinx=\sqrt2\;m\\ \text{square both sides}\\ cos^2x+sin^2x-2cosxsinx=2m^2\\ 1-2cosxsinx=2m^2\\ -2cosxsinx=2m^2-1\\ 2cosxsinx=1-2m^2\\ sin(2x)=1-2m^2 \)

.
 Mar 15, 2019
 #4
avatar+102320 
+1

Nice, Melody.....

 

 

cool cool cool

CPhill  Mar 15, 2019
 #5
avatar+102763 
+1

Thanks Chris,

Guests answer was really good too!

Melody  Mar 15, 2019
 #6
avatar+159 
+1

thanks so much to both the users who posted answers!

 

In the second answer, I'm just confused about where the dividing by sqrt(2) comes from, since sin(pi/4) and cos(pi/4) equal sqrt(2) over 2, not just sqrt(2)

hearts123  Mar 15, 2019
 #7
avatar
+2

Oh I thought there might have been a simpler way smiley

 

Also, to hearts123, this might help answer your question:

 

\(\frac{\sqrt2}{2}=\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{\sqrt2}=\frac{(\sqrt2)^2}{2\sqrt2}=\frac{2}{2\sqrt2}=\frac{1}{\sqrt2}\)

Guest Mar 15, 2019
 #8
avatar+159 
+1

oh right, thanks so much :)

hearts123  Mar 15, 2019
 #9
avatar+102763 
+1

You had me confused for a moment,  because I only ever think of them as 1/sqrt2

But guest is correct, they are equivalent.

 

I never remember the ratios like you obviously do, I just know the triangles that that they come fom.

 

\(\frac{\pi}{4}\; radians = 45^\circ\\~\\ cos45^\circ=sin45^\circ=\frac{1}{\sqrt2}\)

 

 

Melody  Mar 15, 2019

3 Online Users