We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1141
1
avatar

 

Given: m || n, m∠1=65∘, m∠2=60, and BD−→bisects ∠ABC.

Prove m∠6=70∘

It is given that m∥n, m∠1=65∘,m∠2=60∘, and BD−→bisects ∠ABC. Because of the triangle sum theorem, 

∘m∠3=55∘ . By the ________, ∠3≅∠4, so m∠4=55∘. Using the ________, 

m∠ABC=110∘. m∠5=110∘ because vertical angles are congruent. Because of the ________

m∠5+m∠6=180∘. Substituting gives 110∘+m∠6=180∘. So, by the __________, m∠6=70∘.

 

 

Options: [Definition of bisector], [Transitive property of equality],[angle addition postulate],

[same side interior angles theorm] ,  [corresponding angles postulate],  [alternate interior angles postulate],   [subtraction property of equality],   [linear pair of postulate]

 Dec 11, 2017
 #1
avatar+104712 
+1

Definition of Bisector

 

Angle Addition Postulate

 

Same Side Interior Angles Theorem

 

Subtraction Property of Equality

 

 

cool cool cool

 Dec 11, 2017

18 Online Users

avatar