Given: m || n, m∠1=65∘, m∠2=60, and BD−→bisects ∠ABC.

Prove m∠6=70∘

It is given that m∥n, m∠1=65∘,m∠2=60∘, and BD−→bisects ∠ABC. Because of the triangle sum theorem, 

∘m∠3=55∘ . By the ________, ∠3≅∠4, so m∠4=55∘. Using the ________, 

m∠ABC=110∘. m∠5=110∘ because vertical angles are congruent. Because of the ________

m∠5+m∠6=180∘. Substituting gives 110∘+m∠6=180∘. So, by the __________, m∠6=70∘.



Options: [Definition of bisector], [Transitive property of equality],[angle addition postulate],

[same side interior angles theorm] ,  [corresponding angles postulate],  [alternate interior angles postulate],   [subtraction property of equality],   [linear pair of postulate]

Guest Dec 11, 2017

Definition of Bisector


Angle Addition Postulate


Same Side Interior Angles Theorem


Subtraction Property of Equality



cool cool cool

CPhill  Dec 11, 2017

16 Online Users


New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.