Given positive integers $x$ and $y$ such that $x\neq y$ and $\frac{1}{x} + \frac{1}{y} = \frac{1}{18}$, what is the smallest possible value for $x + y$?
1/ x + 1/y = 1/18
x and y must be > 18
Let z = 18
Let x = z + a
Let y = z + b
So we have that
1 / ( z + a) + 1 /(z + b) = 1 / z simplify
[ z + b + z + a ] / [ (z + a) (z + b) ] = 1 / z cross-multiply
z [2z + a + b ] = (z + a) ( z + b)
2z^2 + az + bz = z^2 + az + bz + ab
z^2 = ab
This implies that
18^2 = ab
324 = ab
Factors of 324 are 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | 27 | 36 | 54 | 81 | 108 | 162 | 324 (15 divisors)
x + y is minimized when a = 12 and b = 17
So....x = z + a = 18 + 12 = 30
And y = z + b = 18 + 27 = 45
So x + y = 30 + 45 = 75