+0  
 
0
521
2
avatar

Given positive integers $x$ and $y$ such that $x\neq y$ and $\frac{1}{x} + \frac{1}{y} = \frac{1}{18}$, what is the smallest possible value for $x + y$?

 Jul 13, 2021
 #1
avatar+208 
0

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{18} \\x+y=\frac{xy}{18} \\18x+18y=xy \\xy-18x-18y=0 \\xy-18x-18y+324=324 \\(x-18)(y-18)=324\)

factors of 324: 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, and 324

 

can you do it yourself now? 

 

JP

 Jul 13, 2021
 #2
avatar+26387 
+1

Given positive integers x and y such that \(x \ne y\) and

\( \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{18}\),
what is the smallest possible value for \(x+y\)?

 

\(\begin{array}{|rcll|} \hline \dfrac{1}{x} + \dfrac{1}{y} &=& \dfrac{1}{18} \\\\ \dfrac{x+y}{xy} &=& \dfrac{1}{18} \\\\ \mathbf{xy} &=& \mathbf{18*(x+y)} \\ \hline \end{array}\)

 

\(\large{AM\ge GM}\)

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{x+y}{2}} &\ge& \mathbf{\sqrt{xy}} \\ x+y &\ge& 2\sqrt{xy} \quad &| \quad \text{square both sides} \\ (x+y)^2 &\ge& 4xy \quad | \quad xy = 18*(x+y) \\ (x+y)^2 &\ge& 4*18*(x+y) \\ x+y &\ge& 4*18 \\ \mathbf{x+y } &\ge& \mathbf{72} \\ \hline \end{array}\)

 

\(\text{The smallest possible value for $x+y$ is $72$}\)
Source: https://www.quora.com/Given-positive-integers-x-and-y-x-does-not-equal-y-and-frac-1-x-frac-1-y-frac-1-12-what-is-the-smallest-possible-value-for-x-y

 

In general:

\(\begin{array}{|rcll|} \hline \dfrac{1}{x} + \dfrac{1}{y} &=& \dfrac{1}{n} \\\\ \mathbf{x+y } &\ge& \mathbf{4n} \\ \hline \end{array}\)

\(\text{The smallest possible value for $x+y$ is $4n$}\)

 

laugh

 Jul 14, 2021

4 Online Users