+0  
 
0
216
1
avatar

Given that S=7a+b+7c and also S=6a+8b+6c, where 51< S < 149 and S is an integer, find the sum a+b+c. 

Guest Nov 12, 2017
 #1
avatar+86919 
+2

 

I have assumed that a,b,c are integers.....don't know if this is correct....!!!!

 

S=7a+b+7c 

S=6a+8b+6c       

 

Subtract the second equation from the first and rearrange

 

a + c  = 7b   

 

So  using the first equation.........

 

S  =  7 (a + c)  + b  ⇒  S  = 49b + b =   50b

 

But since     51 < S < 149    and S is an integer....  then     51 < 50b < 149  ⇒  b = 2

 

So    S  = 100

 

So  manipulating the first equation, we have

 

100 = 7a + 2 + 7c

 

98  = 7 (a + c)     →  a + c  =  14

 

So.....the sum of a + b + c  =   (a + c) + b =  14 + 2  =  16

 

 

 

 

cool cool cool

CPhill  Nov 12, 2017
edited by CPhill  Nov 12, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.