We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1037
2
avatar+599 

Given that the graphs of $y=h(x)$ and $y=j(x)$ intersect at $(2,2),$ $(4,6),$ $(6,12),$ and $(8,12),$ there is one point where the graphs of $y=h(2x)$ and $y=2j(x)$ must intersect. What is the sum of the coordinates of that point?

 Aug 28, 2017

Best Answer 

 #1
avatar+8194 
+5

The given intersection points lie on  y = h(x)  and  y = j(x)  .

For example...since  (8, 12)  is an intersection point....   12 = h(8)   and   12 = j(8)

 

 

When  x = 4  ,     h(2x)    =    h(2(4))    =    h(8)    =    12    =    y

 

When  x = 4  ,     2j(x)     =    2j(4)       =    2(6)    =    12    =    y

 

So... (4, 12)  is a point on  y = h(2x)  and on  y = 2j(x)  .

4 + 12  =  16

 

 

Sorry that this isn't a very good explanation.....If it doesn't make sense, it might help to try different numbers for  x  , such as 1, 2, or 6...to see why they don't work.  smiley

 Aug 29, 2017
 #1
avatar+8194 
+5
Best Answer

The given intersection points lie on  y = h(x)  and  y = j(x)  .

For example...since  (8, 12)  is an intersection point....   12 = h(8)   and   12 = j(8)

 

 

When  x = 4  ,     h(2x)    =    h(2(4))    =    h(8)    =    12    =    y

 

When  x = 4  ,     2j(x)     =    2j(4)       =    2(6)    =    12    =    y

 

So... (4, 12)  is a point on  y = h(2x)  and on  y = 2j(x)  .

4 + 12  =  16

 

 

Sorry that this isn't a very good explanation.....If it doesn't make sense, it might help to try different numbers for  x  , such as 1, 2, or 6...to see why they don't work.  smiley

hectictar Aug 29, 2017
 #2
avatar+101360 
+1

 

Thanks, hectictar......these often throw me.....!!!!

 

 

 

cool cool cool

 Aug 29, 2017

17 Online Users

avatar
avatar
avatar
avatar