+0  
 
0
835
2
avatar+598 

Given that the graphs of $y=h(x)$ and $y=j(x)$ intersect at $(2,2),$ $(4,6),$ $(6,12),$ and $(8,12),$ there is one point where the graphs of $y=h(2x)$ and $y=2j(x)$ must intersect. What is the sum of the coordinates of that point?

 Aug 28, 2017

Best Answer 

 #1
avatar+7352 
+5

The given intersection points lie on  y = h(x)  and  y = j(x)  .

For example...since  (8, 12)  is an intersection point....   12 = h(8)   and   12 = j(8)

 

 

When  x = 4  ,     h(2x)    =    h(2(4))    =    h(8)    =    12    =    y

 

When  x = 4  ,     2j(x)     =    2j(4)       =    2(6)    =    12    =    y

 

So... (4, 12)  is a point on  y = h(2x)  and on  y = 2j(x)  .

4 + 12  =  16

 

 

Sorry that this isn't a very good explanation.....If it doesn't make sense, it might help to try different numbers for  x  , such as 1, 2, or 6...to see why they don't work.  smiley

 Aug 29, 2017
 #1
avatar+7352 
+5
Best Answer

The given intersection points lie on  y = h(x)  and  y = j(x)  .

For example...since  (8, 12)  is an intersection point....   12 = h(8)   and   12 = j(8)

 

 

When  x = 4  ,     h(2x)    =    h(2(4))    =    h(8)    =    12    =    y

 

When  x = 4  ,     2j(x)     =    2j(4)       =    2(6)    =    12    =    y

 

So... (4, 12)  is a point on  y = h(2x)  and on  y = 2j(x)  .

4 + 12  =  16

 

 

Sorry that this isn't a very good explanation.....If it doesn't make sense, it might help to try different numbers for  x  , such as 1, 2, or 6...to see why they don't work.  smiley

hectictar Aug 29, 2017
 #2
avatar+98196 
+1

 

Thanks, hectictar......these often throw me.....!!!!

 

 

 

cool cool cool

 Aug 29, 2017

35 Online Users

avatar
avatar
avatar