+0  
 
0
44
1
avatar+300 

Given that x is a multiple of 23478, what is the greatest common divisor of \(f(x)=(2x+3)(7x+2)(13x+7)(x+13)\)  and x?

RektTheNoob  Feb 2, 2018

Best Answer 

 #1
avatar
+2

Since 23478 prime factors are = 2 * 3 * 7 * 13 * 43, and the first 4 factors are common to the polynomial f(x)=(2x+3)(7x+2)(13x+7)(x+13), therefore no matter what value x takes, the GCD of the polynomial and x will ALWAYS be = 2 x 3 x 7 x 13 = 546 !!.

Guest Feb 2, 2018
Sort: 

1+0 Answers

 #1
avatar
+2
Best Answer

Since 23478 prime factors are = 2 * 3 * 7 * 13 * 43, and the first 4 factors are common to the polynomial f(x)=(2x+3)(7x+2)(13x+7)(x+13), therefore no matter what value x takes, the GCD of the polynomial and x will ALWAYS be = 2 x 3 x 7 x 13 = 546 !!.

Guest Feb 2, 2018

7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details