+0

# Given the statement √4x^2-4x+1 = 2x-1

-1
44
1

Given the statement  √4x^2-4x+1 = 2x-1 (xEZ) the average of the four largest integer values for 2x-1 for which this inequality is not true is.

Guest Nov 15, 2017
Sort:

#1
+79894
+3

√ [4x^2  - 4x + 1 ]  can be wriiten as  √ [ 2x - 1 ]^2   =   l  2x - 1 l

So we have that either

2x - 1  = 2x - 1

Redundant

Or

2x - 1 = - [  2x - 1 ]

2x - 1 == -2x + 1      rearrange  as

4x  - 2  = 0

4x  = 2

x  = 2/4  = 1/2

The root will be  ≥ 0    for all x   and at x  = 1/2 the root   = 0

But   at x  = 1/2....2x -1   = 0       and this function  wll be negative  for all x < 1/2

So...the 4 largest integer values for 2x - 1  for which the equality is not true are     -3, -2, -1 , 0

And the average of these is  -2

CPhill  Nov 15, 2017

### 23 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details