+0  
 
+1
2
1
avatar+202 

You know how the number one rule for square roots is the fact that \(\sqrt{x} + \sqrt{y} \neq \sqrt{x+y}\)?

 

Well, I got bored, so I tried to find a set of numbers where this actually true!

 

Not sure if it's possible, but yeah, I couldn't find any?

 

So, do you guys know a set of numbers that satsifies the unsatisfiable? 

 

Thanks!

 May 5, 2024
edited by NotThatSmart  May 5, 2024
 #1
avatar+128796 
+1

x             y

0             0      true

> 0          0      true

0          > 0      true

 

cool cool cool

 May 5, 2024

2 Online Users

avatar