+0  
 
0
926
3
avatar+546 

√36x^2


 


4√32m^7 n^9


 


Simplify radical expressions


A. 4√ 7• 57


B. 5√-55√-2


 


What is the simplest Form?


3 128x^7


 


Simplest form?


√45x^5y^3 √35xy^4


 


√50x^6/√2x^4

 Jul 11, 2014

Best Answer 

 #2
avatar+129898 
+10

3√ (128x^7) = 3√( 64*2*x^7) = 3*8√ (x^7) = 24x3√ x

------------------------------------------------------------------------------------------------

√(45x^5y^3) √(35xy^4)  ....let's simplify this one separately and then combine what we've got

 √(45x^5y^3) = √(9*5*x^5*y^3)= 3x2y√(5xy)

√(35xy^4) = y2√(35x)

So multiplying both of these, we have

3x2y3√(175x2y) = 3x3y3√(25*7*y) = 5*3x3y3√(7y) = 15x3y3√(7y)

---------------------------------------------------------------------------------------------

√50x^6/√2x^4   ........we can write this as √(50x^6/(2x^4))  ....and simplifying, we have

√(25x^2)   = 5x  .........pretty easy, once you simplify, huh??

 

  

 

 

 

  

 Jul 11, 2014
 #1
avatar+33661 
+10

I'll do a few for you:

I assume the first one is √(36x2) = √36*√x2 = √62*√x2 = 6x

 

4√(32m7n9) = 4√32√m7√n9 = 4√(42*2)*√(m6*m)*√(n8*n) = 4*4√2*m3√m*n4√n = 16m3n4√(2*m*n)

 

B. This is a tricky one!  5√(-5)*5*√(-2) = 5*i*√5*5*i*√2  where i is the "imaginary" number √(-1)

Since i2 = -1, we have  5√(-5)*5*√(-2) = 25*i2*√5*√2 = -25√10

 Jul 11, 2014
 #2
avatar+129898 
+10
Best Answer

3√ (128x^7) = 3√( 64*2*x^7) = 3*8√ (x^7) = 24x3√ x

------------------------------------------------------------------------------------------------

√(45x^5y^3) √(35xy^4)  ....let's simplify this one separately and then combine what we've got

 √(45x^5y^3) = √(9*5*x^5*y^3)= 3x2y√(5xy)

√(35xy^4) = y2√(35x)

So multiplying both of these, we have

3x2y3√(175x2y) = 3x3y3√(25*7*y) = 5*3x3y3√(7y) = 15x3y3√(7y)

---------------------------------------------------------------------------------------------

√50x^6/√2x^4   ........we can write this as √(50x^6/(2x^4))  ....and simplifying, we have

√(25x^2)   = 5x  .........pretty easy, once you simplify, huh??

 

  

 

 

 

  

CPhill Jul 11, 2014
 #3
avatar+546 
0

THANK YOU GUYS!!!!!!!!!

 Jul 11, 2014

3 Online Users

avatar
avatar
avatar