If f(x) = (x+1)(x2+1)(x4+1)(x8+1)(x16+1)(x32+1), then in simplified form f(2) = 2n-1. Determine the value of n.
If f(x) = (x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)(x^32+1), then in simplified form f(2) = 2n-1. Determine the value of n.
f(2) =
(2 + 1) (2^2 + 1) (2^4 + 1)(2^8 + 1) (2^16 + 1)(2^32 + 1) =
(3)(5)(17)(257)(65537)(4294967297) =
18446744073709551615 = 2^n - 1 add 1 to both sides
18446744073709551616 = 2^n take the log of both sides
log (18446744073709551615) = log (2)^n and we can write
log (18446744073709551615) = n* log (2) divide both sides by log 2
log (18446744073709551615) / log (2) = n = 64