Find the area of the region enclosed by the graph of $x^2 + y^2 = 2x - 6y + 6 + 14x - 16y + 80$.
Graph of a Circle: (x - h)^2 + (y - k)^2 = r^2
Circle with center (h, k), radius r.
Move variable terms to one side:
\(x^2-16x+y^2+22y=86\)
Complete the square:
\((x-8)^2-64+(y+11)^2-121=86\)
\((x - 8)^2+(y+11)^2=86+121+64=271=r^2\)
The area of the circle is \(\pi{r^2}=271\pi\)