+0  
 
0
229
2
avatar

a is point (-1,6) on a cartesian graph and b is point (14,9) on the same graph. Point C is on the x axis. The least value of line ac plus line cb is?

Guest Nov 1, 2017
 #1
avatar+87621 
+1

Let the point  c on the x axis be  (x, 0)

 

ac + cb  can be represented as D =

 

D  =  sqrt [ (x + 1)^2 + 6^2 ]  + sqrt [ (14- x)^2 + 9^2]

 

D = [  x^2 + 2x  + 37 ]^(1/2) + [ x^2  - 28x + 277 ]^(1/2)

 

Take the derivative and set to 0

 

D'  =  [ 2x + 2] / ( 2  [  x^2 + 2x  + 37 ]^(1/2))  +  [ 2x - 28] / (2   [ x^2  - 28x + 277 ]^(1/2) )  = 0

 

[ x + 1 ] /   [  x^2 + 2x  + 37 ]^(1/2)  +  [ x - 14] / [ x^2  - 28x + 277 ]^(1/2)  = 0

 

[ x + 1 ] /   [  x^2 + 2x  + 37 ]^(1/2)  =   [ 14 - x ] /  [ x^2  - 28x + 277 ]^(1/2)

 

Square both sides

 

[ x^2 + 2x + 1 ] /  [  x^2 + 2x  + 37 ] =  [ x^2 - 28x + 196] /  [  x^2 -28x + 277 ]

 

Cross - multiply

 

[ x^2 + 2x + 1 ] [  x^2 -28x + 277 ]  =  [ x^2 - 28x + 196]  [  x^2 + 2x  + 37 ]

 

Simplify

 

x^4 - 26 x^3 + 222 x^2 + 526 x + 277  =  x^4 - 26 x^3 + 177 x^2 - 644 x + 7252

 

45x^2  + 1170x  - 6975  =  0

 

9x^2  + 234x -  1395  =  0 

 

Solving this for  x produces   x = 5  or x = -31  [ reject the second solution ]

 

So.....the distance is minimized when   c  =   (5, 0 )

 

We can prove this if

 

arctan  [  6/[5- -1] ]  =  arctan [ 9 / [ 14 - 5] ]   is true

 

arctan  [  6/6]  =  arctan [ 9/9]

 

arctan 1  =   arctan 1         and it is true

 

And the minimum distance  ac + cb  is

 

sqrt [ (5 + 1)^2 + 6^2 ]  + sqrt [ (14- 5)^2 + 9^2] =

 

√ 72  +  √ 162  =

 

√ 2  [ 6 + 9]  =

 

15√ 2  units  

 

 

 

 

 

cool cool cool

CPhill  Nov 1, 2017
 #2
avatar+87621 
+1

Alternatively.....if you haven't had Calculus....you could solve this directly for x

 

6 / [ x + 1 ] =  9 / [ 14 - x ] 

 

Cross-multiply

 

6 [ 14 - x ]  = 9 [ x + 1 ]

 

84 - 6x  =   9x + 9

 

75  = 15x

 

 x  = 5       =  c  =   (5, 0 )    

 

 

cool cool cool   

CPhill  Nov 1, 2017

9 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.