We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
62
8
avatar

I'm struggling with these problems, and help would be greatly appreciated. Thank you!

 

 

1. What are the coordinates of the points where the graphs of f(x)=x^3-x^2+x+1 and g(x)=x^3+x^2+x-1 intersect?

 

2. Let a and b be real numbers, where a

 

3. Find all points (x,y) that are 13 units away from the point (2,7) and that lie on the line x-2y=10.

 

4a. Assume that f(3)=4. Name a point that must be on the graph of y=f(x)+4.

 

4b. Assume that f(3)=4. Name a point that must be on the graph of y= 1/2f(x/2).

 Jun 24, 2019
 #1
avatar+101813 
+2

1. What are the coordinates of the points where the graphs of f(x)=x^3-x^2+x+1 and g(x)=x^3+x^2+x-1 intersect?

 

Set these equal

 

x^3 - x^2 + x + 1  =  x^3 + x^2 + x - 1        subtract  x^3, x from both sides

 

-x^2  + 1 = x^2 - 1       add  x^2 to both sides....subtract 1 from both sides

 

0  = 2x^2 - 2

 

2x^2 - 2  = 0

 

x^2 - 1  = 0

 

x^2  = 1         take both roots

 

x = 1      or  x = -1

 

When x = 1 , y  =(1)^3 - (1)^2 + 1 + 1  =  2

 

So (1, 2)  is one intersection point

 

And when x = - 1 , y =  (-1)^3 - (-1)^2  - 1 + 1  =  -2

 

So  (-1,-2)  is the other intersection point

 

See the graph here : https://www.desmos.com/calculator/nnvu6b9qhr

 

EDIT TO CORRECT AN ERROR     

 

 

cool cool cool

 Jun 24, 2019
edited by CPhill  Jun 25, 2019
 #2
avatar+101813 
+2

3. Find all points (x,y) that are 13 units away from the point (2,7) and that lie on the line x-2y=10.

 

We can construct  a circle  centered at (2,7)  with a radius of 13

 

The equation of this circle is

 

(x - 2)^2 + (y - 7)^2  = 169       (1)

 

Rearrange the equation of the line  as  x = 2y+10     (2)

 

Put (2) int (1)  for  x     and we have

 

(2y + 10 - 2)^2 + ( y - 7)^2  = 169

 

(2y + 8)^2 + (y - 7)^2 = 169   simplify

 

4y^2  + 32y + 64  + y^2 - 14y + 49  = 169

 

5y^2 + 18y + 113 = 169       subtract 169 from both sides

 

5y^2 + 18y - 56   = 0     factor this

 

(5y  + 28) ( y - 2)  = 0

 

Set each factor to 0  and solve for y

 

5y + 28  = 0                     y  - 2  =  0

 

5y  = -28                           y  = 2

 

y  = -28/5

 

 

Put both y values back into the equation of the line to find their associated x coordinates

 

x - 2(-28/5)  = 10

x + 56/5  =  50/5

x = 50/5 - 56/5

x = -6/5

 

So one point  is  ( -6/5, -28/5)

 

And

 

x - 2(2)  = 10

x - 4  = 10

x = 14

 

And the other point is  (14, 2)

 

cool cool cool

 Jun 24, 2019
 #3
avatar+101813 
+1

4a. Assume that f(3)=4. Name a point that must be on the graph of y=f(x)+4.

 

The graph of  y = f(x) + 4    shifts  f(x) up by 4 units....so....

 

f(x) + 4    =   (3, 4 + 4)   =  ( 3 , 8)

 

 

cool cool cool

 Jun 24, 2019
 #4
avatar+912 
+3

Wow great job! 

 

cool cool cool

Nickolas  Jun 24, 2019
 #5
avatar+101813 
+1

4b. Assume that f(3)=4. Name a point that must be on the graph of y= 1/2f(x/2).

 

The point (3, 4)  is on the originalgraph

 

The "x/2"  horizontally "stretches" the graph by a factor of 2

 

The (1/2)   vertically  "compresses" the graph by  a factor  of 1/2

 

So....a point on  y = (1/2)f(x/2)  must be     (2*3 , (1/2)*4)  =  (6, 2)

 

 

 

cool cool cool

 Jun 24, 2019
 #6
avatar
+1

I'm sorry, all the answers are incorrect except for 4a and 4b.

 Jun 24, 2019
 #7
avatar+101813 
+2

Sorry....I mis-copied (1)....see my edit

 

However...(3)  is correct....see the graph, here : https://www.desmos.com/calculator/zvlbv8gf1t

 

 

cool cool cool

CPhill  Jun 25, 2019
 #8
avatar
0

Indeed, 3 is correct, read it wrong

 Jun 26, 2019

5 Online Users