+0  
 
0
44
2
avatar

A triangle is formed with one vertex at the vertex of the parabola \(y=x^2-1\) and the other two vertices at the intersections of the line \(y=r\) and the parabola. If the area of the triangle is between 8 and 64 inclusive, find all possible values of r. Express your answer in interval notation.

 Jul 7, 2022

Best Answer 

 #2
avatar+124526 
+2

To make this problem easier, let's just shift the parabola up one unit so the we have the parabola  y =  x^2

 

The height  of our triangle = x^2  and the base =  2x

 

To have an area of 8  we need to  solve this

 

(1/2)* 2x  * x^2   = 8

 

x^3  =  8

 

x = 2

 

At x = 2 the base will be  2(2)  = 4  and the height will be  2^2 =  4  = y

 

And similarly   for and area of  64  we need  to  solve this

 

(1/2) * 2x  * x^2 =  64

 

x^4 =  64

 

x =  4

 

At x = 4, the base =  2(4) = 8   and the height = 4^2  = 16 = y

 

So....we  need to  shift everything down  by one  unit

 

y = "r"  will range from   (4-1) =  3  to  (16 -1)  =   15

 

So  r =   [ 3 , 15 ] 

 

 

cool cool cool

 Jul 8, 2022
 #1
avatar
0

The answer is [3,24].

 Jul 7, 2022
 #2
avatar+124526 
+2
Best Answer

To make this problem easier, let's just shift the parabola up one unit so the we have the parabola  y =  x^2

 

The height  of our triangle = x^2  and the base =  2x

 

To have an area of 8  we need to  solve this

 

(1/2)* 2x  * x^2   = 8

 

x^3  =  8

 

x = 2

 

At x = 2 the base will be  2(2)  = 4  and the height will be  2^2 =  4  = y

 

And similarly   for and area of  64  we need  to  solve this

 

(1/2) * 2x  * x^2 =  64

 

x^4 =  64

 

x =  4

 

At x = 4, the base =  2(4) = 8   and the height = 4^2  = 16 = y

 

So....we  need to  shift everything down  by one  unit

 

y = "r"  will range from   (4-1) =  3  to  (16 -1)  =   15

 

So  r =   [ 3 , 15 ] 

 

 

cool cool cool

CPhill Jul 8, 2022

7 Online Users

avatar