+0  
 
0
34
1
avatar+634 

For each functon find the following (if they exist).

     a. End Behavior including the equations of horizontal or slant asymptotes.

     b. Vertical Asymptote(s). Distinguish between VA and Holes.

 

\(f(x)=\frac{-3x^3}{x^3-4x}\)

 
AdamTaurus  Nov 15, 2017
Sort: 

1+0 Answers

 #1
avatar+91049 
+1

For each functon find the following (if they exist).

     a. End Behavior including the equations of horizontal or slant asymptotes.

     b. Vertical Asymptote(s). Distinguish between VA and Holes.

 

 

\(y=\dfrac{-3x^3}{x^3-4x}\\ y=\dfrac{-3x^3}{x(x-2)(x+2)}\\~\\ so\;\;x\ne\pm2,\;\;\;x\ne0\\~\\ y=\dfrac{-3x^3}{x^3-4x}\\ \)

 

 

 

\(y=\dfrac{-3x^3\div x^3}{(x^3-4x)\div x^3}\\ y=\dfrac{-3}{1-\frac{4}{x^2}}\\ \displaystyle\lim_{x\rightarrow 0^\pm}y=\frac{-3}{1-\infty}=0 \quad \text{Hole at (0,0)} \\\displaystyle\lim_{x\rightarrow \pm\infty}y=\frac{-3}{1-0}=-3\\~\\ \text{Let }\delta\;\;\text{ be a miniscule positive number.}\\ \displaystyle\lim_{x\rightarrow2^+}y=\frac{-3}{1-(1-\delta)}=\frac{-3}{\delta}=-\infty\\ \displaystyle\lim_{x\rightarrow-2^-}y=\frac{-3}{1-(1-\delta)}=\frac{-3}{\delta}=-\infty\\ \displaystyle\lim_{x\rightarrow2^-}y=\frac{-3}{1-(1+\delta)}=\frac{-3}{-\delta}=\infty\\ \displaystyle\lim_{x\rightarrow-2^+}y=\frac{-3}{1-(1+\delta)}=\frac{-3}{-\delta}=\infty\\ \)
 

Hole at (0,0)

Vertical asymptotes at  x=+2 and x=-2

Horizontal asymptotes at  y=-3

 

Here is the graph

 

 
Melody  Nov 15, 2017

11 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details