+0  
 
+1
122
2
avatar+2611 

An infinite geometric series has common ratio \(-1/5\)  and sum \(16.\) What is the first term of the series?

tertre  Jan 5, 2018
Sort: 

2+0 Answers

 #1
avatar+86613 
+1

Sum of a geometric series  =

 

a1  /  [ 1  - r ]          where  a1  is the first term   and r is the common ratio....so we have

 

16  =  a1  /  [ 1  -  -1/5]

 

16  =  a1  /  [  6/5]       multiply both sides by 6/5

 

(6/5)16  =  a1   =   

 

96/5

 

 

cool cool cool

CPhill  Jan 5, 2018
edited by CPhill  Jan 5, 2018
 #2
avatar+117 
+1

Solution: Let the first term be \(a\). Because the sum of the series is \(16\) , we have \(16= \frac{a}{1-(-1/5)} = \frac{a}{6/5} = \frac{5a}{6}\) . Therefore, \(a=\boxed{\frac{96}{5}}\) .

azsun  Jan 5, 2018

34 Online Users

avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy