+0

# Great question!

0
55
4
+1704

The equation $$y = \frac{x + A}{Bx + C}$$, where $$A,B,$$ and $$C$$  are integers, is shown below. What is $$A + B + C$$?

https://latex.artofproblemsolving.com/a/c/0/ac0cfb3f53a94da8604511d000667db714ff61b9.png

tertre  Feb 5, 2018
Sort:

#1
+6365
+3

Here's one method...

There appears to be an asymptote at  x = 2 , so we know that when  x = 2 ,  Bx + C  =  0

B(2) + C  =  0

If we solve  $$y=\frac{x+A}{Bx+c}$$  for  x , we get  $$x=\frac{A-Cy}{By-1}$$

There appears to be an asymptote at  y = -1 , so we know that when  y = -1 ,  By - 1  =  0

B(-1) - 1  =  0

B  =  -1              Use this value for  B  to find  C .

(-1)(2) + C  =  0

C  =  2

And the graph passes through the point  (0, -2) , so...

$$-2 = \frac{0 + A}{-1(0) + 2} \\ -2=\frac{A}{2}$$

-4  =  A

Here's a graph of  $$y=\frac{x-4}{-1x+2}$$https://www.desmos.com/calculator/ibji5giqge

A + B + C   =   -4 + -1 + 2   =   -3

hectictar  Feb 5, 2018
#2
+82944
+1

Very nice, hectictar.....!!!

CPhill  Feb 5, 2018
#3
+1704
+2

Amazing, hectictar!

tertre  Feb 5, 2018
#4
+82944
+3

Here's one more approach....

Note that the points    (0, - 2)  (3,1)  and (4,0)  are on the graph

So....we must have that

0 =  4 + A    ⇒  A  =  -4

And

-2  =  [0 + (-4)]  / [B (0) + C ]

-2  +  -4 / C

-2C  = - 4    ⇒  C  =  2

And

1  =  [ 3 + (-4) ] / [ B(3) + 2 ]

1 =  - 1 / [ 3B + 2]

3B + 2  =  - 1

3B =  -3  ⇒   B =  -1

So....A + B + C     =     -4 - 1 + 2    =    -3

CPhill  Feb 6, 2018

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details