+0  
 
0
463
2
avatar

H(x)=(x^2)+1 and K(x)=-(x^2)+4. If K(H)=0, what are the roots/solutions?

Guest May 31, 2015

Best Answer 

 #1
avatar+78574 
+10

If K(H) = 0 , this implies that.....

 

-((x^2+1)^2) + 4  = 0   multiply both sides by -1

 

(x^2+1)^2 - 4  = 0    simplify

 

(x^2 + 1)^2  = 4    and by the square root property, we have

 

x^2 + 1  = ± 2     subtract 1 from both sides

 

x^2  =  ± 2 - 1   ....so either.....

 

x^2  = -3    .......which leads to two  "non-real " solutions   ....  or .....

 

x^2  = 1    so that, using the square root property again,   x = ± 1

 

And these are the two "real" solutions.....check that they make the specified condition true .........

 

 

CPhill  May 31, 2015
Sort: 

2+0 Answers

 #1
avatar+78574 
+10
Best Answer

If K(H) = 0 , this implies that.....

 

-((x^2+1)^2) + 4  = 0   multiply both sides by -1

 

(x^2+1)^2 - 4  = 0    simplify

 

(x^2 + 1)^2  = 4    and by the square root property, we have

 

x^2 + 1  = ± 2     subtract 1 from both sides

 

x^2  =  ± 2 - 1   ....so either.....

 

x^2  = -3    .......which leads to two  "non-real " solutions   ....  or .....

 

x^2  = 1    so that, using the square root property again,   x = ± 1

 

And these are the two "real" solutions.....check that they make the specified condition true .........

 

 

CPhill  May 31, 2015
 #2
avatar+90988 
0

This one looks interesting CPhill :)

Melody  Jun 1, 2015

8 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details