+0  
 
0
462
3
avatar

On the $xy$-plane, the origin is labeled with an $M$. The points $(1,0)$, $(-1,0)$, $(0,1)$, and $(0,-1)$ are labeled with $A$'s. The points $(2,0)$, $(1,1)$, $(0,2)$, $(-1, 1)$, $(-2, 0)$, $(-1, -1)$, $(0, -2)$, and $(1, -1)$ are labeled with $T$'s. The points $(3,0)$, $(2,1)$, $(1,2)$, $(0, 3)$, $(-1, 2)$, $(-2, 1)$, $(-3, 0)$, $(-2,-1)$, $(-1,-2)$, $(0, -3)$, $(1, -2)$, and $(2, -1)$ are labeled with $H$'s. If you are only allowed to move up, down, left, or right by one unit at each step, starting from the origin, how many distinct paths can be followed to spell the word MATH?

 

TYSM! smiley

 Mar 10, 2021
 #1
avatar
-1

I count 66 ways.

 Mar 10, 2021
 #2
avatar
0

STOP TROLLING BRUH

Guest Mar 10, 2021
 #3
avatar
0

sdffaa

Guest Mar 10, 2021

2 Online Users