We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-5
108
5
avatar+25 

ok:

state the axis of symmetry of the parabola: y=3(x-2)^2-4

also state the vertex, and whether it is a maximum or a minimum, and the y intercept of the parabola and the graph

 May 30, 2019
edited by ProffesorNobody  May 30, 2019
 #1
avatar+104069 
+2

y = 3(x - 2)^2 - 4

Vertex  = (2, - 4)

Axis of symmetry :  x  = 2

This parabola opens upward....therefore...the vertex is a minimum

y intercept : let x  = 0   and we have

y = 3(0-2)^2 - 4   =  3(-2)^2 - 4  =  3(4) - 4  = 12 - 4  = 10

 

Here's the graph :   https://www.desmos.com/calculator/w1tqaeu5yv

 

 

cool cool cool

 May 31, 2019
 #2
avatar+25 
-5

can you explain?

ProffesorNobody  May 31, 2019
 #3
avatar+25 
-5

can you explain the process?

ProffesorNobody  May 31, 2019
 #4
avatar+104069 
+2

y = 3( - 2)^2  + ( - 4 )

We have the form

y = a(x - h)^2 + k

When "a"  is positive, the parabola opens upward

The vertex  = (h, k)  = (2, -4 )

The axis of symmery  is  x  = h

The y intercept is found just as I described

The vertex is always the minimum when a parabola opens upward

 

cool cool cool

CPhill  May 31, 2019
 #5
avatar+25 
-5

godddd thank youuuuu

ProffesorNobody  May 31, 2019

7 Online Users