+0  
 
0
47
3
avatar+58 

In the figure below, PQRS is a parallelogram of perimeter  24 and area 28. What is the perimeter of rectangle QOST? Include an explanation of how you solved the problem.

 

 

https://ibb.co/cRERSS

sageatron2000  Apr 18, 2018
Sort: 

3+0 Answers

 #1
avatar+86528 
+1

Sincs RS  =  5.....then PQ  also equals 5 since RS  is parallel to PQ

 

So using the perimeter.... PS  + QR  =  24 - 5 -  5  =   14

And since PS = QR  then 

2OR  = 14      divide both sides by 2

QR  = 7

 

And the area of  PQRS  = ( Base * Height)   = (QR * Height)

So

 

28  =  7 * Height       divide both sides by 7

4   =  Height    =  ST

 

And by the Pythagorean Theorem

 

RT  = sqrt  [ RS^2  - ST^2]  =   sqrt [ 5^2  - 4^2]  = sqrt [ 25 - 16 ] = sqrt (9)  =   3

 

So....the base  of QOST  = QT =  QR + RT   =  7 + 3   =  10

 

So  the area of QOST  =  

 

QT  * ST  =

 

10 * 4   =

 

40 units^2

 

 

cool cool cool

CPhill  Apr 18, 2018
 #2
avatar
+1

Since the perimeter of PQRS = 24 and QP=RS = 5 + 5 = 10. Therefore PS=QR =[24 - 10] / 2 = 7

And since the area of PQRS = 28, therefore the Height =28/7 =4=ST, since area of PQRS = base x height.Therefore the right triangle RST is a 3, 4, 5 triangle with RT = 3.

RT + QR =3 + 7 =10 =QT. Therefore the perimeter of the rectangle QOST =2[4 +10] = 28.

CPhill: I think the young person wants the PERIMETER, not the Area.

Guest Apr 18, 2018
edited by Guest  Apr 18, 2018
 #3
avatar+86528 
0

Sorry, guest....my bad.....thanx for the better eyesight....LOL!!!!

 

 

cool cool cool

CPhill  Apr 19, 2018

24 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy