+0  
 
+1
149
3
avatar

Jenny's grandmother has 24 cats. Seventeen of the cats do not catch mice. Ten of the cats have black fur. What is the smallest possible number of cats that do not catch mice that have black fur?

Guest May 16, 2018
 #1
avatar+91148 
+2

Note that  24  - 10  =  14  don't have black  fur

 

And suppose  that these 14 are part of the 17 that don't catch mice

 

Then.....3 that catch mice  must also have black fur....and this is the smallest number that do not catch mice but have black fur

 

 

cool cool cool

CPhill  May 16, 2018
 #2
avatar+3276 
+2

We can draw a Venn diagram(sorry, don't have one).

So, 17 of the cats don't catch mice, and 10 have black fur.

Thus, 17+10=27

\(27-24=\boxed{3}\)

smileysmiley

tertre  May 17, 2018
 #3
avatar+20153 
+2

Jenny's grandmother has 24 cats.

Seventeen of the cats do not catch mice.

Ten of the cats have black fur.

What is the smallest possible number of cats that do not catch mice that have black fur?

 

\(\large{1.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & & x & \color{red} 10 \\ \hline \overline{\text{black fur}} & & & \small{24-10} \\ \hline & \small{24-17}& \color{red}17 & \color{red}24 \\ \end{array}\)

 

\(\large{2.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{10-x } & x & 10 \\ \hline \overline{\text{black fur}} & \small{7-(10-x) =} & \small{17-x} & 14 \\ & \small{x-3 } & & \\ \hline & 7 & 17 & 24 \\ \end{array} \)

 

\(\large{3.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{10-x } & x & 10 \\ & \small{\text{min: } 10-x=0 } & & \\ & \Rightarrow x_{min} = \color{red}10 & & \\ \hline \overline{\text{black fur}} & \small{x-3 } & \small{17-x} & 14 \\ & \small{\text{min: } x-3=0} & \small{\text{min: } 17-x=0 } & \\ & \Rightarrow x_{min} = \color{red}3 & \Rightarrow x_{min} = \color{red}17 \\ \hline & 7 & 17 & 24 \\ \end{array}\)

 

\(\large{4.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{10-x } & x & 10 \\ & \Rightarrow x_{min} = \color{red}10 & = min({\color{red}10},{\color{red}3},{\color{red}17}) & \\ & & = 3 & \\ \hline \overline{\text{black fur}} & \small{x-3 } & \small{17-x} & 14 \\ & \Rightarrow x_{min} = \color{red}3 & \Rightarrow x_{min} = \color{red}17 \\ \hline & 7 & 17 & 24 \\ \end{array} \)

 

\(\large{5.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{7 } & \color{red}3 & 10 \\ \hline \overline{\text{black fur}} & \small{0 } & \small{14} & 14 \\ \hline & 7 & 17 & 24 \\ \end{array}\)

 

laugh

heureka  May 17, 2018

14 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.