+0  
 
+1
132
4
avatar+212 

The equation of a parabola is given.

 

y=−1/6x2+7x−80

 

What is the equation of the directrix of the parabola?

 

Enter your answer in the box.

i wrote the other one wrong sorry.

lysxsa  May 23, 2018
 #1
avatar+119 
+1

y= (−1/6)x^2+7x−80      multiply both sides by -6

 

-6y  =    x^2   - 42x  +  480       subtract 480 from both sides

 

-6y  - 480   =  x^2  -  42x    take (1/2)  of 42  = 21.....square this  = 441  and add to both sides

 

-6y - 480 + 441  =   x^2  - 42x  +  441       simplify the left, factor the right

 

-6y - 39   =  (x  - 21)^2      factor the left side as

 

-6 (y  +  39/6)   =  ( x - 21)^2       (1)

 

Usiing the form

 

4p (y - k)  =  ( x  - h)      we  can   write (1)  as

 

4 (-3/2)(y - (-39/6) )   =  ( x  - 21)^2

 

 

The vertex  = ( x, k)  =  ( 21, -39/6)   and    p  = -3/2

 

And the directrix   is given by    y  = k - p  →   y  = -39/6 - (-3/2)  =  -39/6 + 3/2  = -39/6 + 9/6  =

-30/6  = - 5

penquino21  May 24, 2018
 #2
avatar+119 
+1

hope this helps! :)

penquino21  May 24, 2018
 #3
avatar+7002 
+1

First you need to complete the square.

 \(y=-\dfrac{1}{6}x^2+7x-80\)

\(y = \dfrac{-1}{6}(x^2-42x+480)\\ y = \dfrac{-1}{6}((x-21)^2+39)\\ y = \dfrac{-1}{6}(x-21)^2-\dfrac{13}{2}\\ (y-(-\dfrac{13}{2})) = -\dfrac{1}{6}(x-21)^2\\ -6(y-(-\dfrac{13}{2})) = (x-21)^2\\ 4(\dfrac{-3}{2})(y-(-\dfrac{13}{2})) = (x-21)^2\\\)

We can see from the equation that vertex of parabola = (21,-13/2) and focus is 3/2 units below the vertex.

Therefore the equation of directrix is y = (-13/2 + 3/2), i.e., y = -5.

MaxWong  May 24, 2018
 #4
avatar+119 
+2

whoops, sorry forgot to put that in my answer thx MW

penquino21  May 24, 2018

3 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.