We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
86
2
avatar+160 

 

.

 Feb 24, 2019
 #1
avatar+22182 
+1

In the figure, the area of trapezoid DBCE is 80 cm2
The ratio of the bases DE to BC is 3 : 5.
What is the area of triangle ADE, in square centimeters?

\(\text{Let trapezoid $ DBCE = A_1 $}\\ \text{Let triangle $ ADE = {\color{red}A_2} $} \\ \text{Let triangle $ ABC = A = A_1+A_2 = \dfrac{BC\cdot h}{2} $}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{DE}{BC} = \dfrac{3}{5} &=& \dfrac{h_2}{h} \\\\ \dfrac{3}{5} &=& \dfrac{h_2}{h} \\\\ \mathbf{h_2} & \mathbf{=} & \mathbf{\dfrac{3}{5}h} \\\\ \hline h &=& h_1+h_2 \\\\ h &=& h_1+\dfrac{3}{5}h \\\\ h_1 &=& h-\dfrac{3}{5}h \\\\ \mathbf{h_1} & \mathbf{=} & \mathbf{\dfrac{2}{5}h} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline A_2 &=& \dfrac{DE\cdot h_2}{2} \quad | \quad h_2 =\dfrac{3}{5}h \\\\ A_2 &=& \dfrac{DE}{2}\cdot \dfrac{3}{5}h \\\\ A_2 &=& DE\cdot h \cdot \dfrac{3}{10} \\\\ \mathbf{DE\cdot h } & \mathbf{=} & \mathbf{\dfrac{10} {3} A_2} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline A_1 &=& \left(\dfrac{BC+DE}{2}\right) h_1 \quad | \quad h_1 =\dfrac{2}{5}h \\\\ A_1 &=& \left(\dfrac{BC+DE}{2}\right) \dfrac{2}{5}h \\\\ A_1 &=& \dfrac{BC}{2}\cdot \dfrac{2}{5}h + \dfrac{DE}{2}\cdot \dfrac{2}{5}h \\\\ A_1 &=& \dfrac{BC\cdot h}{2}\cdot \dfrac{2}{5} + DE\cdot h \cdot \dfrac{1}{5} \quad | \quad \dfrac{BC\cdot h}{2} = A_1 + A_2,\ \mathbf{DE\cdot h=\dfrac{10} {3} A_2} \\\\ A_1 &=& (A_1+A_2)\cdot \dfrac{2}{5} + \dfrac{10} {3} A_2\cdot \dfrac{1}{5} \\\\ A_1 &=& \dfrac{2}{5}A_1 +\dfrac{2}{5}A_2 + \dfrac{10} {15} A_2 \\\\ A_1-\dfrac{2}{5}A_1 &=& \dfrac{2}{5}A_2 + \dfrac{10} {15} A_2 \\\\ \dfrac{3}{5}A_1 &=& \dfrac{6}{15}A_2 + \dfrac{10} {15} A_2 \\\\ \dfrac{3}{5}A_1 &=& \dfrac{16} {15} A_2 \\\\ 3A_1 &=& \dfrac{16} {3} A_2 \\\\ A_2 &=& \dfrac{9} {16} A_1 \quad | \quad A_1 = 80\ cm^2 \\\\ A_2 &=& \dfrac{9} {16} \cdot 80\ cm^2 \\\\ A_2 &=& 9\cdot 5\ cm^2 \\\\ \mathbf{A_2} & \mathbf{=} & \mathbf{45 cm^2} \\ \hline \end{array}\)

 

The area of triangle ADE is 45 cm2

 

laugh

 Feb 25, 2019
edited by heureka  Feb 25, 2019
 #2
avatar+160 
0

Thanks!

You explained the problem really well and helped me understand!

 Mar 3, 2019

17 Online Users

avatar