We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
152
2
avatar+279 

\(The function h(x) is defined as: h(x) = \left\{ \begin{array}{cl} \lfloor 4x \rfloor & \text{if } x \le \pi, \\ 3-x & \text{if }\pi < x \le 5.2, \\ x^2& \text{if }5.2< x. \end{array}\right. Find h(h(\sqrt{2})).\)

 

I got 32 when I tried to solve this but it was incorrect.. ):

 May 6, 2019
 #1
avatar+23318 
+3

I got 32 when I tried to solve this but it was incorrect.. ):

 

\(\text{The function $h(x)$ is defined as: $h(x) = \left\{ \begin{array}{cl} \lfloor 4x \rfloor & \text{if } x \le \pi, \\ 3-x & \text{if }\pi < x \le 5.2, \\ x^2& \text{if }5.2< x. \end{array}\right. $}\\ \text{Find $h\Big(h\left(\sqrt{2} \right) \Big)$.} \)

 

\(\begin{array}{|rcll|} \hline h\left(\sqrt{2} \right) &=& \lfloor 4\cdot \sqrt{2} \rfloor \\ &=& \lfloor 4\cdot 1.41421356237 \rfloor \\ &=& \lfloor 5.65685424949 \rfloor \\ &=& 5 \\\\ h(5) &=& 3-5 \\ &=& -2 \\\\ \mathbf{h\Big(h\left(\sqrt{2} \right) \Big)} & =& \mathbf{ -2 } \\ \hline \end{array} \)

 

laugh

 May 6, 2019
 #2
avatar+279 
+2

Thanks!

 May 6, 2019

8 Online Users