+0

# Halp

0
83
3

The red parabola shown is the graph of the equation $y=ax^2 + bx + c$. Find $a\cdot b\cdot c$.

Feb 10, 2020

#1
0

The parabola is -1/3*x^2 - 2x + 2, so abc = (-1/3)(-2)(2) = 4/3.

Feb 10, 2020
#2
+11731
+2

The red parabola shown is the graph of the equation $y=ax^2 + bx + c$. Find $a\cdot b\cdot c$.

Feb 10, 2020
#3
+109740
+1

The vertex  is  (-3, 5)

And the x coordinate of the  vertex  is given by

-b / [ 2a]  = -3

b = 6a

And the point  (-1, 3)  is on the graph.....so.....we have this system

3  =  a(-1)^2  + 6a (-1)  + c

5  =  a(-3)^2  + 6a(-3)  + c         simplify

a  - 6a  + c   = 3

9a  - 18a  + c  = 5

-5a  + c   = 3

-9a  + c   = 5          multiply  the second equation through by  -1

-5a  + c   = 3

9a   -  c  = -5           add these

4a  = -2

a = -2/4  = -1/2

So  b  = 6(-1/2)  =  -3

And  -9a  + c  =  5    ....so....

-9(-1/2) + c  = 5

9/2  + c  =10/2

c = 10/2  - 9/2 =   1/2

So

a  *  b  *  c  =

(-1/2) * (-3)  * 1/2  =

3 / 4

Here's a graph  : https://www.desmos.com/calculator/nl6jcccb3k

Feb 10, 2020
edited by CPhill  Feb 10, 2020