We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
95
4
avatar+1342 

Find the sum of all the integer values of m that makes the following equation true: \(\left(2^m3^5\right)^m 9^7=\dfrac{\left(256\cdot3^m\right)^m}{\left(\sqrt2\right)^{14}}\).

 Jun 25, 2019
edited by tommarvoloriddle  Jun 25, 2019
edited by tommarvoloriddle  Jun 25, 2019
 #1
avatar
+1

Let the speed of the Plane =P
Let the speed of the wind = W
P + W = 840 / 1.75...............(1)
P - W = 840 / 2.....................(2)
Can you solve the 2 simultaneous equations?

 Jun 25, 2019
 #2
avatar+1342 
+6

Yes Thank You..... I accidently changed the problem... Whops

tommarvoloriddle  Jun 25, 2019
 #3
avatar+103069 
+2

(2^m*3^5)^m *9^7  = (256 * 3^m)^m / (2^1/2)^14

 

(2^m*3^5)^m *(3^2)^7  =  (2^8 * 3^m)^m / 2^7

 

2^(m^2) *  3^(5m) * 3^14  =  2*(8m) * 3^(m^2) / 2^7

 

2^(m^2) * 3^(5m + 14)  = 2^(8m - 7) * 3^(m^2)

 

Equating exponents on the bases on both sides, we have that

 

m^2 = 8m - 7               and          m^2  = 5m + 14

 

m^2 - 8m + 7  = 0                        m^2 - 5m - 14   =  0

 

(m -7)(m - 1) = 0                        (m + 2)(m - 7)  = 0

 

Set each factor to 0  and solve for m  and we have that the possible values forn  are

 

m = 7    m   = 1        and           m  = -2        m  = 7 

 

The common solution is that m  = 7 

 

 

cool cool cool

 Jun 25, 2019
 #4
avatar+1342 
+6

:O Wow Cphill... Long solution... It's very nice!

tommarvoloriddle  Jun 25, 2019

48 Online Users

avatar