+0

# halppp

0
444
4

Find the sum of all the integer values of m that makes the following equation true: $$\left(2^m3^5\right)^m 9^7=\dfrac{\left(256\cdot3^m\right)^m}{\left(\sqrt2\right)^{14}}$$.

Jun 25, 2019
edited by tommarvoloriddle  Jun 25, 2019
edited by tommarvoloriddle  Jun 25, 2019

#1
+1

Let the speed of the Plane =P
Let the speed of the wind = W
P + W = 840 / 1.75...............(1)
P - W = 840 / 2.....................(2)
Can you solve the 2 simultaneous equations?

Jun 25, 2019
#2
+9

Yes Thank You..... I accidently changed the problem... Whops

tommarvoloriddle  Jun 25, 2019
#3
+2

(2^m*3^5)^m *9^7  = (256 * 3^m)^m / (2^1/2)^14

(2^m*3^5)^m *(3^2)^7  =  (2^8 * 3^m)^m / 2^7

2^(m^2) *  3^(5m) * 3^14  =  2*(8m) * 3^(m^2) / 2^7

2^(m^2) * 3^(5m + 14)  = 2^(8m - 7) * 3^(m^2)

Equating exponents on the bases on both sides, we have that

m^2 = 8m - 7               and          m^2  = 5m + 14

m^2 - 8m + 7  = 0                        m^2 - 5m - 14   =  0

(m -7)(m - 1) = 0                        (m + 2)(m - 7)  = 0

Set each factor to 0  and solve for m  and we have that the possible values forn  are

m = 7    m   = 1        and           m  = -2        m  = 7

The common solution is that m  = 7   Jun 25, 2019
#4
+9

:O Wow Cphill... Long solution... It's very nice!

tommarvoloriddle  Jun 25, 2019