For \(x \ge 1,\) let \(f\) be the function defined as follows:
\(f(x) = \left\{ \begin{array}{cl} \lfloor x \rfloor \left| x - \lfloor x \rfloor - \dfrac{1}{2 \lfloor x \rfloor} \right| & \text{if $x < \lfloor x \rfloor + \dfrac{1}{\lfloor x \rfloor}$}, \\ f \left( x - \dfrac{1}{\lfloor x \rfloor} \right) & \text{otherwise}. \end{array} \right.\)
Let \(g(x) = 2^{x - 2007}.\) Compute the number of points in which the graphs of \(f\) and \(g\) intersect.