Solve √x+14−8√x−2+√x+23−10√x−2=3
Substitute: y=√x−2ory2=x−2x=y2+2
√x+14−8√x−2+√x+23−10√x−2=3√y2+2+14−8y+√y2+2+23−10y=3√y2−8y+16+√y2−10y+25=3y2−8y+16=(y−4)2=(4−y)2y2−10y+25=(y−5)2=(5−y)2
Case 1:y2−8y+16=(y−4)2y2−10y+25=(y−5)2√(y−4)2+√(y−5)2=3y−4+y−5=32y−9=32y=9+32y=12y=6Case 2:y2−8y+16=(y−4)2y2−10y+25=(5−y)2√(y−4)2+√(5−y)2=3y−4+5−y=31≠3no solution!Case 3:y2−8y+16=(4−y)2y2−10y+25=(5−y)2√(4−y)2+√(5−y)2=34−y+5−y=3−2y+9=32y=9−32y=6y=3Case 4:y2−8y+16=(4−y)2y2−10y+25=(y−5)2√(4−y)2+√(y−5)2=34−y+y−5=3−1≠3no solution!
First solution:y=6x=y2+2x=62+2x=38Second solution:y=3x=y2+2x=32+2x=11