+0

hard factorial question

0
251
5

6 × 6! + 7 × 7! + 8 × 8! + 9 × 9! + 10 × 10! + 11 × 11! + 12 × 12! + 13 × 13! + 14 × 14! = a! - b!

a + b= ?

Guest Oct 7, 2017
Sort:

#1
0

6 × 6! + 7 × 7! + 8 × 8! + 9 × 9! + 10 × 10! + 11 × 11! + 12 × 12! + 13 × 13! + 14 × 14! = a! - b!

a! - b! =[(14+1)! - 6!]

a + b =15 + 6 =21

Guest Oct 7, 2017
#2
+92174
+1

How did you do that guest?

Melody  Oct 8, 2017
#3
+26623
+3

Here are some of the intermediate steps Melody:

.

Alan  Oct 8, 2017
#4
+92174
+3

Thanks Alan :)

Melody  Oct 8, 2017
#5
+19205
+3

6 × 6! + 7 × 7! + 8 × 8! + 9 × 9! + 10 × 10! + 11 × 11! + 12 × 12! + 13 × 13! + 14 × 14! = a! - b!

a + b= ?

$$\begin{array}{|rcll|} \hline && n\times n! \\ &=& (n+1-1)\times n! \\ &=& [(n+1)-1]\times n! \\ &=& (n+1)\times n! -1\times n! \\ &=& n!\times (n+1) -n! \\ &=& (n+1)! -n! \\\\ &&\mathbf{ n\times n! = (n+1)! -n! } \\ \hline \end{array}$$

$$\begin{array}{|rcrcr|} \hline 6\times 6! &=& 7!- 6! \\ 7\times 7! &=& 8!- 7! \\ 8\times 8! &=& 9!- 8! \\ 9\times 9! &=& 10!- 9! \\ 10\times 10! &=& 11!-10! \\ 11\times 11! &=& 12!-11! \\ 12\times 12! &=& 13!-12! \\ 13\times 13! &=& 14!-13! \\ 14\times 14! &=& 15!-14! \\ \hline \text{sum} &=& 7! &\mathbf{-}& \mathbf{6!} \\ &+& 8! &-& 7! \\ &+& 9! &-& 8! \\ &+& 10! &-& 9! \\ &+& 11! &-& 10! \\ &+& 12! &-& 11! \\ &+& 13! &-& 12! \\ &+& 14! &-& 13! \\ &+& 15! &-& 14! \\\\ &=& \not{ {\color{green}7!}} && -6! \\ && {\color{red}{-}}\not{ {\color{red}7!}} && {\color{green}{+}} \not{ {\color{green}8!}} \\ && {\color{green}{+}}\not{ {\color{green}9!}} && {\color{red}{-}}\not{ {\color{red}8!}} \\ && {\color{red}{-}}\not{ {\color{red}9!}} && {\color{green}{+}} \not{ {\color{green}10!}} \\ && {\color{green}{+}} \not{ {\color{green}11!}} && {\color{red}{-}}\not{ {\color{red}10!}} \\ && {\color{red}{-}}\not{ {\color{red}11!}} && {\color{green}{+}} \not{ {\color{green}12!}} \\ && {\color{green}{+}} \not{ {\color{green}13!}} && {\color{red}{-}}\not{ {\color{red}12!}} \\ && {\color{red}{-}}\not{ {\color{red}13!}} && {\color{green}{+}} \not{ {\color{green}14!}} \\ && \mathbf{+15!} && {\color{red}{-}}\not{ {\color{red}14!}} \\\\ &\mathbf{=}& \mathbf{15! - 6!} \\ \hline \end{array}$$

so a = 15 and b = 6

a+b = 15+6 = 21

heureka  Oct 10, 2017

26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details