+0  
 
-2
676
1
avatar

I came across these tough problems and have no idea how to solve them. Help would be appreciated.

 

1. In the diagram below, \(\overline{PQ}\) is tangent at \(P\) to the circle with center \(O\), point \(S\) is inside the circle, and \(\overline{QS}\) intersects the circle at \(R\). If \(QR = RS = 3\)\(OS = 2\) , and \(PQ = 6\), then find the radius of the circle.

 

 

2. In right triangle \(ABC\), the length of side \(\overline{AC}\) is \(8\), the length of side \(\overline{BC}\) is \(6,\) and \(\angle C = 90^\circ.\) The circumcircle of triangle \(ABC\) is drawn. The angle bisector of \(\angle ACB\) meets the circumcircle at point \(M.\) Find the length \(CM\).

 

Thanks a lot!

 Apr 6, 2020
 #1
avatar+1678 
0

1. By power of a point, the radius is sqrt(33).

 

2. by power of a point, CM = 5*sqrt(3).

 Apr 8, 2020

3 Online Users