+0  
 
0
818
5
avatar+4622 

Let \(S(n)\) equal the sum of the digits of positive integer \(n\). For example, \(S(1507)=13\) . For a particular positive integer \(n\)\(S(n)=1274\). Which of the following could be the value of \(S(n+1)\)?

 

I'm getting 1239 as an answer.

 

Please help!

 Mar 14, 2018
 #1
avatar+37153 
0

n is an integer..... n+1 is the NEXT sequential integer.....obtained by adding '1' to the n integer....so the sum of the digits COULD be '1' greater.  Is this a multiple choice question?   What are your choices?

 

1275

 Mar 14, 2018
edited by ElectricPavlov  Mar 14, 2018
 #2
avatar
0

what about 99 and 100?

Guest Mar 14, 2018
 #3
avatar+37153 
0

The question asks what   'could'  the next one be.....and we weren't given any multiple choices...

ElectricPavlov  Mar 14, 2018
edited by ElectricPavlov  Mar 14, 2018
 #4
avatar+129899 
+1

 

 

We are looking for an integer whose sum of its digits  = 1274

 

Here's a possibility :

 

S(n)  = 1274  = S ( 7777....7)   where we have 7 repeated 182 times

 

Note that    7 * 182  =   1274

 

So....  S ( n + 1) = S( [7777....7] + 1 )  = S(1275)    =  S (555.....5)   where we have 5 repeated 255 times

 

Note that  255 * 5  =  1275

 

 

cool cool cool

 Mar 14, 2018
 #5
avatar+37153 
0

We are talking about a VERY large number here....there are thousands of possibilities....without knowing the starting a1  and the  r of the series and where in the series you are, it could be almost anything.....were you given any more information...or multiple choices?

 Mar 15, 2018

1 Online Users

avatar